Kutatóközponti Tudományos Napok

Magyar Tudományos Akadémia
Természettudományi Kutatóközpont

Budapest
2012
Kutatóközponti Tudományos Napok

2012

Magyar Tudományos Akadémia
Természettudományi Kutatóközpont

Budapest, 2012
Az előadók névsora

Bacquet Caroline
MTA TTK EI Aktív Transzport Fehérjék Munkacsoport
bacquet.caroline@ttk.mta.hu

Balázsi Katalin
MTA TTK MFA Vékonyrétegfizikai Osztály
balazsi.katalin@ttk.mta.hu

Deák András
MTA TTK MFA Kerámia és Nanokompozitok Osztály
deak.andras@ttk.mta.hu

Deák Andrea
MTA TTK SZKI Organokatalízis és Szupramolekuláris Kémiai Osztály, Szupramolekuláris Kémiai Laboratórium
deak.andrea@ttk.mta.hu

Farkas Mária
MTA TTK AKI Környezetkémiai és Katalízis Osztály, Légkörkémiai Csoport
farkas.maria@ttk.mta.hu

Fülöp Éva
MTA TTK KPI Narratív Pszichológiai Csoport
fulop.eva@ttk.mta.hu

Hessz Dóra
MTA TTK MFI Spektroszkópiai Osztály
hessz.dora@ttk.mta.hu

Homolya László
MTA TTK MFI Funkcionális Farmakológiai Osztály, Molekuláris Sejtbiológiai Laboratórium
homolya.laszlo@ttk.mta.hu

Honbolygó Ferenc
MTA TTK KPI Fejlődés-pszichofiziológiai Csoport
honbolygo.ferenc@ttk.mta.hu

Horváth János
MTA TTK KPI Kisérleti Pszichológiai Osztály
horvath.janos@ttk.mta.hu
Horváth Róbert
MTA TTK MFA Fotonika Osztály, Nanobioszensorika Kutatócsoport
horvath.robert@ttk.mta.hu

Horváth Tibor
MTA TTK AKI Környezetvédelmi Laboratórium
horvath.tibor@ttk.mta.hu

Imre Balázs
MTA TTK AKI Polimerfizikai Osztály
bimre@mail.bme.hu

Jakab Zsolt
MTA TTK SZKI Heterociklusos Kémiai Osztály, Szénhidrátkémiai Laboratórium
jakab.zsolt.krisztian@ttk.mta.hu

Jobbágy Csaba
MTA TTK SZKI Organokatalizis és Szupramolekuláris Kémiai Osztály, Szupramolekuláris
Kémiai Laboratórium
jobbagy.csaba@ttk.mta.hu

Kalmár Lajos
MTA TTK EI Rendezetlen Fehérje Munkacsoport
kalmar.lajos@ttk.mta.hu

Kékesi Orsolya Sára
MTA TTK MFI Funkcionális Farmakológiai Osztály, Molekuláris Idegtudományi
Laboratórium
kekesi.orsolya@ttk.mta.hu

Keszthelyi Tamás
MTA TTK MFI Spektroszkópiai Osztály
keszthelyi.tamas@ttk.mta.hu

Mészáros Bálint
MTA TTK EI Fehérjeszerkezet Munkacsoport
meszaros.balint@ttk.mta.hu

Molnár Laura
MTA TTK SZKI Organokatalizis és Szupramolekuláris Kémiai Osztály, Organokatalizis
Laboratórium
molnar.laura@ttk.mta.hu
Nagy Nóra Veronika
MTA TTK MFI Spektroszkópiai Osztály, ESR Laboratórium
nagy.nora@ttk.mta.hu

Németh Krisztina
MTA TTK MFI Biokémiai Farmakológiai Osztály, Kémiai Farmakológiai Laboratórium
nemeth.krisztina@ttk.mta.hu

Oláh Judit
MTA TTK EI Sejtarchitektúra Munkacsoport
olah.judit@ttk.mta.hu

Pajkossy Tamás
MTA TTK AKI Határfelületek és Felületmódosítás Osztály
pajkossy.tamas@ttk.mta.hu

Pál Ildikó
MTA TTK MFI Funkcionális Farmakológia Osztály, Molekuláris Idegtudományi Laboratórium
pal.ildiko@ttk.mta.hu

Pápai Imre
MTA TTK SZKI Szerkezetkémiai Osztály, Elméleti Kémiai Laboratórium
papai.imre@ttk.mta.hu

Pongrácz Anita
MTA TTK MFA Mikrotechnológia Osztály, MEMS (mikro-elektro-mechanikai rendszerek) Laboratórium
pongracz.anita@ttk.mta.hu

Sebestyén Zoltán
MTA TTK AKI Megújuló és Tiszta Energia Osztály, Hőbomlási Folyamatok Csoport
sebestyen.zoltan@ttk.mta.hu

Szabó György
MTA TTK MFA Komplex rendszerek Osztály
szabo.gyorgy@ttk.mta.hu

Szabó Mónika
MTA TTK MFI Funkcionális Farmakológiai Osztály, Gyógyszertranszporter és Toxicitás Laboratórium
szabo.monika@ttk.mta.hu
Szabó Tamás
MTA TTK AKI Határfelületek és Felületmódosítás Osztály
szabo.84.tamas@ttk.mta.hu

Szarka Györgyi
MTA TTK SZKI Polimer Kémiai Osztály, Polimer Kémiai Laboratórium
szarka.gyorgyi@ttk.mta.hu

Tapasztó Levente
MTA TTK MFA Nanoszerkezetek Osztály
tapaszt.levente@ttk.mta.hu

Tolnai Gyula
MTA TTK AKI Funkcionális és Szerkezeti Anyagok Osztály
tolnai.gyula@ttk.mta.hu

Topál József
MTA TTK KPI Összehasonlító Viselkedéskutató Csoport
topal.jozsef@ttk.mta.hu

Tóth Brigitta
MTA TTK KPI Pszichofiziológia Csoport
toth.brigitta@ttk.mta.hu

Tóth Eszter
MTA TTK SZKI Szerkezetkémiai Osztály, Tömegspektrometria Laboratórium
thoth.eszter@ttk.mta.hu

Tóth Judit
MTA TTK EI Genom Metabolizmus Munkacsoport
toth.judit@ttk.mta.hu

Volk János
MTA TTK MFA Kerámia és Nanokompozitok Osztály
volk.janos@ttk.mta.hu

Wittner Lucia
MTA TTK KPI Összehasonlító Pszichofiziológiai Csoport
wittner.lucia@ttk.mta.hu
A tudományos posztereket kiállítók névsora

Badari Andrea Cecília MTA TTK AKI Környezetkémiai és Katalízis Osztály, Katalízis Csoport
badari.cecilia@ttk.mta.hu

Baji Zsófia MTA TTK MFA Mikrotechnológia Osztály
baji.zsofia@ttk.mta.hu

Barkasi Irén MTA TTK KPI Általános Pszichológiai Osztály
barkaszi.iren@ttk.mta.hu

Barthos Róbert MTA TTK AKI Környezetkémiai és Katalízis Osztály, Katalízis Csoport
barthos.robert@ttk.mta.hu

Boha Roland MTA TTK KPI Pszichofiziológiai Csoport
boha.roland@ttk.mta.hu

Bombicz Petra MTA TTK SZKI Szerkezetkémiai Osztály, Röntgen Egykristály Laboratórium
bombicz.petra@ttk.mta.hu

Bozi János MTA TTK AKI Megújuló és Tiszta Energia Osztály, Hőbomlási Folyamatok Csoport
bozi.janos@ttk.mta.hu

Bőhm Tamás MTA TTK KPI Pszichofiziológiai Csoport
bohm.tamas@ttk.mta.hu

Czégény Zsuzsanna MTA TTK AKI Megújuló és Tiszta Energia Osztály, Hőbomlási Folyamatok Csoport
czegeny.zsuzsanna@ttk.mta.hu

Érsek Gábor MTA TTK SZKI, Polimer Kémiai Osztály, Polimer Kémiai Laboratórium
ersek.gabor@ttk.mta.hu

Faludi Gábor MTA TTK AKI Polimerfizikai Osztály; BME Fizikai Kémia és Anyagtudományi Tanszék, Műanyag- és Gumiipari Laboratórium
gfaludi@mail.bme.hu

Farkas Mária MTA TTK AKI Környezetkémiai és Katalízis Osztály, Légkörkémiai Csoport
farkas.maria@ttk.mta.hu
Fegyverneki Dániel
MTA TTK SZKI Organokatalízis és Szupramolekuláris Kémiai Osztály, Organokatalízis Laboratórium
fegyverneki.daniel@ttk.mta.hu

Fekete Zoltán
MTA TTK MFA Mikrotechnológia Osztály
fekete.zoltan@ttk.mta.hu

Fiáth Richárd
MTA TTK KPI Összehasonlító Pszichofiziológiai Csoport
fiath.richard@ttk.mta.hu

Fodor Csaba
MTA TTK SZKI Polimer Kémiai Osztály, Polimer Kémiai Laboratórium
fodor.csaba@ttk.mta.hu

Fürjes Péter
MTA TTK MFA Mikrotechnológia Osztály
furjes.peter@ttk.mta.hu

Gubán Dorottya
MTA TTK AKI Megújuló és Tiszta Energia Osztály, Hidrogén Energia Csoport
guban.dorottya@ttk.mta.hu

Harnos Szabolcs
MTA TTK AKI Környezetkémiai és Katalízis Osztály, Katalízis Csoport
harnos.szabolcs@ttk.mta.hu

Héberger Károly
MTA TTK SZKI Funkcionális és Szerkezeti Anyagok Osztály
heberger.karoly@ttk.mta.hu

Holczer Eszter
MTA TTK MFA Mikrotechnológia Osztály
holczer.eszter@ttk.mta.hu

Horváth Dániel Vajk
MTA TTK SZKI Organokatalízis és Szupramolekuláris Kémiai Osztály,Organokatalízis Laboratórium
horvath.daniel.vajk@ttk.mta.hu

Horváth Domonkos
MTA TTK KPI Összehasonlító Pszichofiziológiai Csoport
horvath.domonkos@ttk.mta.hu

Jakab Zsolt
MTA TTK SZKI Heterociklusos Kémiai Osztály, Szénhidrátkémiai Laboratórium
jakab.zsolt.krisztian@ttk.mta.hu

Kardos Zsófia
MTA TTK KPI Pszichofiziológiai Csoport
kardos.zsofia.klara@ttk.mta.hu
Kárpáti Tamás
MTA TTK MFA Mikrotechnológia Osztály
karpati.tamas@ttk.mta.hu

Kecskés-Kovács Krisztina
MTA TTK KPI Kisérleti Pszichológiai Osztály, Kognitív Idegtudományi Csoport I.
kecskes.kovacs.krisztina@ttk.mta.hu

Keledi Gergely
BME Fizikai Kémia és Anyagtudományi Tanszék, Műanyag- és Gumiipari Laboratórium
gkeledi@mail.bme.hu

Kenyó Csaba
BME Fizikai Kémia és Anyagtudományi Tanszék, Műanyag- és Gumiipari Laboratórium
ckenyo@mail.bme.hu

Kerekes Bálint Péter
MTA TTK KPI Összehasonlító Pszichofiziológiai Csoport
kerekes.balint@ttk.mta.hu

Kollár Márton
MTA TTK AKI Környezetkémiai és Katalízis Osztály, Katalízis Csoport
kollar.marton@ttk.mta.hu

Magda Balázs
MTA TTK MFI Biokémiai Farmakológiai Osztály, Metabolikus Gyógyszer-kölcsönhatások Laboratórium
balazs.m1988@gmail.com

Marton Gergely
MTA TTK MFA Mikrotechnológia Osztály
marton.gergely@ttk.mta.hu

Misják Fanni
MTA TTK MFA Vékonyrétegfüzifikai Osztály
misjak.fanni@ttk.mta.hu

Miskolczy Zsombor
MTA TTK MFI Spektroszkópiai Osztály, Lézerspektroszkópiai Laboratórium
miskolczy.zsombor@ttk.mta.hu

Nyitrai Gabriella
MTA TTK MFI Funkcionális Farmakológiai Osztály, Molekuláris Idegtudományi Laboratórium
nyitrai.gabriella@ttk.mta.hu

Palló Anna
MTA TTK SZKI Szerkezetkémiai Osztály, Röntgen Egykristály Laboratórium
pallo.anna@mta.ttk.hu

Pálmai Marcell
MTA TTK MFI Biológiai Nanokémia Osztály
palmai.marcell@ttk.mta.hu
Pataki Piroska
MTA TTK AKI Polimerfizikai Osztály; BME Fizikai Kémia és Anyagtudományi Tanszék, Műanyag- és Gumipipari Laboratórium
pataki.piroska@ttk.mta.hu

Pomozi Viola
MTA TTK EI Aktív Transzport Fehérjék Munkacsoport
pomozi.viola@ttk.mta.hu

Pongrác Ána
MTA TTK MFA Mikrotechnológia Osztály
pongracz.anita@ttk.mta.hu

Radnóczy Györgyi
MTA TTK MFA Vékonyrétegfizikai Osztály
radnoczi.gyorgyi@ttk.mta.hu

Románszki Loránd
MTA TTK AKI Határfelületek és Felületmódosítás Osztály
romanszki.lorand@ttk.mta.hu

Sebestyén Zoltán
MTA TTK AKI Megújuló és Tiszta Energia Osztály, Hőbomlási Folyamatok Csoport
sebestyen.zoltan@ttk.mta.hu

Simon Ágnieszka
MTA TTK MFI Funkcionális Farmakológiai Osztály, Molekuláris Idegtudományi Laboratórium
simon.agnes@ttk.mta.hu

Sulykos István
MTA TTK KPI Kísérleti Pszichológiai Osztály, Kognitív Idegtudományi Csoport I.
sulykos.istvan@ttk.mta.hu

Szabó Mónika
MTA TTK MFI Funkcionális Farmakológiai Osztály, Gyógyszertranszporter és Toxicitás Laboratórium
szabo.monika@ttk.mta.hu

Szentmihályi Klára
MTA TTK AKI Funkcionális és Szerkezeti Anyagok Osztály
szentmihalyi.klara@ttk.mta.hu

Szikártó Gábor Pál
MTA TTK AKI Megújuló és Tiszta Energia Osztály, Hidrogén Energia Csoport
szijjarto.gabor@ttk.mta.hu

Szikártóné Majrik Katalin
MTA TTK AKI Megújuló és Tiszta Energia Osztály, Hidrogén Energia Csoport
majrik.katalin@ttk.mta.hu
Tátraaljai Dóra
MTA TTK AKI Polimerfizikai Osztály; BME Fizikai Kémia és Anyagtudományi Tanszék, Műanyag- és Gumiipari Laboratórium
tatraaljai@mail.bme.hu

Temesvári Manna
MTA TTK MFI Biokémiai Farmakológiai Osztály, Metabolikus Gyógyszer-kölcsönhatások Laboratórium
temesvari.manna@ttk.mta.hu

Tóth Emília
MTA TTK KPI Összehasonlító Pszichofiziológiai Csoport, PPKE Információs Technológiai Kar
toth.emilia@ttk.mta.hu

Tóth Eszter
MTA TTK SZKI Szerkezetkémiai Osztály, Tömegspektrometria Laboratórium
toth.eszter@ttk.mta.hu

Tóth Katalin
MTA TTK MFI Biokémiai Farmakológiai Osztály, Metabolikus Gyógyszer-kölcsönhatások Laboratórium
toth.katalin@ttk.mta.hu

Tőkési Natália
MTA TTK EI Sejtarchitektúra Munkacsoport
tokesi.natalia@ttk.mta.hu

Turi Eszter
MTA TTK KPI Fejlődéslélektani Csoport
turi.eszter@ttk.mta.hu

Turiák Lilla
MTA TTK SZKI Szerkezetkémiai Osztály, Tömegspektrometria Laboratórium
turiak.lilla@ttk.mta.hu

Varga Eszter
MTA TTK SZKI Organokatalízis és Szupramolekuláris Kémiai Osztály, Organokatalízis Laboratórium
varga.eszter@ttk.mta.hu

Varga Szilárd
MTA TTK SZKI Organokatalízis és Szupramolekuláris Kémiai Osztály, Organokatalízis Laboratórium
varga.szilard@ttk.mta.hu
A főelőadások összefoglalói
Az elektrokémiai kettősréteg általában két szempontból fontos számunkra: (a). Milyen a szerkezete (milyen szpeciesek hol és hogyan helyezkednek el, milyen a töltés és az elektromos térrerősség eloszlása) és (b). milyen kémiai folyamatok játszódnak le benne, és hogyan. Az előadás az első kérdéskörrel foglalkozik, azt feltételezve, hogy az utóbbi folyamatok elhanyagolható szerepük.

Helmholtz felismerése (1879) óta a kettősréteget egy elektromosan kapacitív elemnek tekintjük, azaz burkoltan feltételezzük, hogy a kettősrétegben lévő töltések átrendeződése késedelem nélkül követi a potenciálváltozásokat. Ezzel összhangban, azóta a kettősréteg-elméletek (néhány kivétellel) mind sztatikusak, az egyenletekben idő (vagy frekvencia) nem szerepel; a kettősréteg kialakulásának, átrendeződésének kinetikája a modelleknek nem része. Ez a hiány a huszadik század végéig nem is okozott problémát az akkoriban leggyakrabban vizsgált elektrokémiai rendszerekkel (higany vagy polikristályos nemesfémelektród vizes elektrolitoldatban) kapcsolatban.

Az utóbbi két évtized módszertani fejlődésének köszönhetően lehetővé váltak a kettősréteg átrendeződésének kinetikájára vonatkozó mérések. Az előadásban ilyen témájú, az Ulmi Egyetemen dolgozó kollégákkal együttműködésben végzett kísérleteket ismertetek. Ezek a kísérletek fogalmi szempontból végletekig leegyszerűsített, ám nagyon tiszta és egyértelmű körülmények között végzett elektrokémiai alapmérések, például voltammetriás és impedanciamérések Pt(100) elektródon vizes sósavoldatban, vagy Au(100) elektródon egy tipikus ionfolyadékban, butil-metil-imidazolium-hexafluorofoszfátban. A mérések tanúsága szerint a kettősréteg átrendeződése mérhető sebességű, sőt, ionfolyadékban kifejezetten lassú folyamat. E demonstrációs kísérletekkel a teoretikusok figyelmét kívánom felhívni arra, hogy a kettősréteg-elméleteikbe a lassú fizikai-kémiai (adszorpciós-deszorpciós és transzport) folyamatokat be kell venniük.
ON THE NATURE OF THE ELECTROCHEMICAL DOUBLE LAYER
Tamás Pajkossy

In general, two aspects of the electrochemical double layer are important for the physico-chemist community: First, the structure, i.e. arrangement of chemical species and distribution of electric field and charge. Second, the thermodynamics and kinetics of the chemical reactions – called Faradaic processes – across the double layer. The subject of the lecture is the first issue – assuming the absence of the latter processes.

Since Helmholtz’s statement in 1879, the double layer has been regarded to be capacitive, implying instantaneous double layer structure changes following those of voltage. Accordingly, the vast majority of the double layer theories in the past hundred years have been of static nature; time or frequency do not appear in the resulting equations. In other words, the kinetics of the double layer rearrangement processes have always been out of the scope (note, this approach was just sufficient in the 20th century when the main targets of the physical electrochemistry were mercury and polycrystalline noble metals in aqueous electrolytes).

Recent advances of methodology enabled precise studies of the kinetics of double layer rearrangement processes. To be presented are results of impedance spectroscopy measurements, made in cooperation with colleagues at the Ulm University in the past decade. These experiments have been performed with electrochemical systems which are very simple and well-defined from conceptual points of view – like cyclic voltammetry and impedance measurements on Pt(100) in aqueous HCl solutions or on Au(100) in a typical ionic liquid, butyl-methyl-imidazolium-hexafluorophosphate. The results demonstrate that charging-discharging of the double layer is far from being immeasurably fast; in particular, in the case of the ionic liquids these processes are rather sluggish. These demonstration experiments are aimed to urge theoreticians to include slow adsorption-desorption and local transport processes in their double layer models.
Az ABC (ATP Binding Cassette) transzporter rendszer olyan membrán fehérjék, melyek az ATP-kötés illetve hidrolízis energiáját hasznosítva segítségével elő kerül az anyagok szelektív transzportját a biológiai membránokon keresztül. Számos ABC-fehérje meghatározó szerepet tölt be az ún. élettani határfelületeken, mint pl. a bél, a máj, a vese, a légitáp, vagy a vér-ágál, melyeket szoros sejtek között „összeczopott” aszimmetrikus, - más szóval polarizált sejtek alkotják. Ezen határfelületek normális funkciójához elengedhetetlenül szükséges, hogy a megfelelő transzporter a megfelelő membrán részben helyezkedjen el. Élettani szerepükön túl az ABC-transzporter rendszer szerepét az élettani határfelületen is meghatározó jelentőséggel bírnak. Körülsorozott gyógyszermolekulák és endogén toxikus anyagok szervezeten belüli eloszlását, felszívódását, kiválasztását, illetve toxicitását (ADME-Tox tulajdonságait) alapvetően befolyásolják az ABC-fehérjék azáltal, hogy ezen anyagok szelektív transzportját végzik a szervezet határfelületein.

Jelen munkánk középpontja az ABCB11-nek vagy BSEP-nek (bile salt export pump) nevezett ABC-transzporter áll, amely az epekiválasztás egy meghatározó eleme. Ez a fehérje végzi az epek epesítő transzportját a májsejtek között az ún. epecsatornákkal belsejében. Ezek a csövecskék nagyobban epesítik az epecsatornákat, és ezáltal kialisítják az élettani határfelületen a toxikus anyagok szorakoztatását. Az ABCB11 fehérjében előforduló mutációk által a PFIC2 (progressive familial intrahepatic cholestasis type 2) nevű, örökletes súlyos májbetegség hátterében. A polarizált májsejtekben az ABCB11 a szintézis helyéről a sejtfelszínre vándorol, és folyamatos körbíróság végez a plazmamembrán és egy sejten belüli rezervoár között, amelyet bizonyos típusú endoszómáknak (sejten belüli organellumok) alkotják. Korábbi vizsgálatok arra utaltak, hogy a polarizált sejt aszimmetriájának kialakulásában a sejtek energiáházatartását szabályozó enzimek is szerepet játszhatnak. Jelen munkánk során elő kerül az epekiválasztás, és az epek evesedés céljára következtethetünk, hogy az epeesek felgyorsítják az ABCB11 fehérje sejtfelszínre jutását, és hogy ebben a folyamatban az epekiválasztás energiáházatartását szabályozó enzimek kulcsszerepet töltenek be. Eredményeink rávilágítanak a májsejtek aszimmetriája és energetikai állapota, valamint az epekiválasztás közötti összefüggésre.
ABC (ATP Binding Cassette) transporters are membrane proteins, which facilitate translocation of various substances across biological membranes utilizing the energy of ATP binding and hydrolysis. Numerous ABC proteins play pivotal role in the control of transport processes at important physiological interfaces, such as gut, liver, kidney, airways, as well as the blood-brain-barrier, blood-testis-barrier, placenta, etc. A fundamental component of these barriers is the boundary composed of polarized, i.e., asymmetric cells sealed with tight junctions. Proper targeting of ABC transporters to the correct membrane compartment in these polarized cells is essential for the normal function of the physiological barriers. In addition to their physiological relevance, ABC transporters are also particularly important from pharmacological aspects. As they play essential role in the selective transport of various organic compounds at the gateways of our body, they significantly influence the absorption, distribution, excretion, and toxicity (ADME-Tox) of drugs and endogenous toxic compounds. Our recent study focuses on an ABC transporter, named as ABCB11 or BSEP (bile salt export pump), which is an essential component of the bile excretion machinery in the liver. This protein is responsible for pumping the toxic bile salts from the liver cells into lumen of bile canaliculi, small tubular structures, which subsequently merge to form bile ducts. Mutations in ABCB11 cause severe inherited disease PFIC2 (progressive familial intrahepatic cholestasis type 2). In polarized liver cells, ABCB11 traffics directly from the site of synthesis to the cell surface and then cycles between the plasma membrane and an intracellular reservoir formed by a subtype of endosomes, internal cell organelles. Former studies indicated a link between cell polarization and enzymes regulating of cell energy metabolism. Using fluorescence live-cell imaging and biochemical approaches, our recent study revealed that trafficking of ABCB11 from the intracellular pool to the cell surface can be mobilized by bile acids, which process is controlled by the energy-regulating enzymes. Our results establish a link between liver cell polarity, energy metabolism, and bile excretion.
ÖNSZERVEZŐDŐ ARANY(I)TARTALMÚ SZUPRAMOLEKULÁK
Deák Andrea

A szupramolekuláris kémia egy olyan viszonylagosan új területe a kémiának, amely a biológiai rendszerekben megismert molekuláris önszerveződés elvének a felhasználásával a fizika, az elektronika, a kémiai technológia, nanotechnológia számára potenciálisan hasznos anyagokat képes létrehozni. A lumineszcens, katalitikus, redoxaktív és/vagy biológiai szempontból jelentős fémcentrumoknak a szupramolekulákba történő beépítésével nemesak változatos alakzatú és meretű hanem sokszor szokatlan tulajdonságú rendszerek állíthatók elő (Lehn J.M., 1993).

Az arany(I)tartalmú szupramolekulák vizsgálatának részeként, tanulmányoztuk az arany(I)ionok és megfelelően megválasztott ligandumok önszerveződési reakcióját. Egyszerű, gyors és hatékony szintetikus módszereket dolgoztunk ki arany(I) ionokat tartalmazó önszerveződő szupramolekuláris rendszerek létrehozására és így változatos szerkezetű és sajátságú szupramolekulákat állítottunk elő. Király nyolcas-konformációjú rövid aurofil Au⋯Au kötést tartalmazó kétfémes makrociklusokat (Deák A. et al., 2006; Tunyogi T. et al. 2008; Deák A. et al. 2010), négymagvú makrociklust és helikális koordinációs polimert (Deák A. et al., 2007) valamint kétfémes szupramolekuláris rendszereket (Deák A. et al., 2009; Jobbágy Cs. et al., 2011; Deák A. et al., 2012) is sikerült létrehoznunk. Ezek az arany(I)tartalmú szupramolekulák érdekes szerkezetük mellett szokatlan ionsere, gázadszorpciós, vapokróm (oldószerűek hatására intenzív színváltozás) valamint mechanokróm lumineszcens (a lumineszcencia színének a megváltozás mechanikai hatásra) tulajdonságokat mutattak. A szilárd fázisban kialakuló molekuláris szerveződés és a tulajdonságok közötti összefüggések jobb megértése érdekében, a szupramolekulák szerkezetét egykristály röntgendiffrakcióval határoztuk meg.

A kidolgozott új szintetikus módszerek lehetőséget nyújtanak hasznos tulajdonságú újszerű anyagok előállítására, melyek a szerkezetük és tulajdonságaik közötti kapcsolatok alapos és részletes feltárása után, szenzorok fejlesztésében, katalizisben, stb. valamint a jövőbeli technológiai alkalmazásokban nyerhetnek felhasználást. Az arany vegyületek gyógyszati alkalmazásait alapul véve, ezek a felfedező kutatásban elért eredmények, a későbbiekben fontos szerepet játszhatnak a rák-, AIDS- és malária-elleni hatékony új gyógyszerek kifejlesztésében is.
1. Lehn JM: Supramolecular chemistry

3. Tunyogi T, Deák A, Tárkányi G, Király P, Pál linkás G: Solvent-assisted spontaneous resolution of a 16-membered ring containing gold(I) showing short Au···Au aurophilic interaction and a figure-eight conformation

4. Deák A, Tunyogi T, Károly Z, Klébert Sz, Pál linkás G: Guest escape and uptake in nonporous crystals of a gold(I) macrocycle

6. Deák A, Tunyogi T, Pál linkás G: Synthesis and structure of a cyanoaurate-based organotin polymer exhibiting unusual ion-exchange properties

7. Jobbágy Cs, Tunyogi T, Pál linkás G, Deák A: A versatile solvent-free mechanochemical route to the synthesis of heterometallic dicyanoaurate-based coordination polymers
 INORGANIC CHEMISTRY 50: 7301–7308 (2011)

8. Deák A, Tunyogi T, Jobbágy Cs, Károly Z, Baranyai P, Pál linkás G: Cyanide-bridged bimetallic multidimensional structures derived from organotin(IV) and dicyanoaurate building blocks: ion exchange, luminescence, and gas sorption properties
 GOLD BULLETIN 43: 35–41 (2012)
Supramolecular chemistry, as a relatively new field of science, by using the paradigm of self-assembly derived from biological systems, has developed a vast array of sophisticated methods for the construction of new materials with unique properties for physics, electronics, chemical technology, as well as nanotechnology. For instance, the incorporation of luminescent, catalytic, redox- and/or biologically important metal centers into supramolecular structures not only provides these assemblies with various shapes and dimensions but also with unusual properties (Lehn J.M., 1993).

As part of the studies of gold(I) supramolecules, we studied the self-assembly of gold(I) ions with pre-designed ligands. We developed fast, simple and efficient synthetic strategies to generate complex gold containing self-assembled supramolecular systems. Thus, binuclear macrocycles in a chiral figure-eight conformation containing short aurophilic Au···Au interaction (Deák A. et al., 2006; Tunyogi T. et al. 2008; Deák A. et al. 2010), a tetrannuclear macrocycle and helical coordination polymer (Deák A. et al., 2007), as well as, bimetallic supramolecular systems (Deák A. et al., 2009; Jobbágy Cs. et al., 2011; Deák A. et al., 2012) have been successfully created. Besides their unique structures, these supramolecules showed unusual ion-exchange, gas sorption, vapochromic (colour change in response to the vapours of volatile organic compounds) and mechanochromic luminescent (luminescence colour change in response to mechanical grinding) properties. X-ray structural analysis has been performed to get in-depth understanding on how the molecular stacking influences the solid-state properties of these self-assembled metallosupramolecules.

In the long term, the availability of new, useful synthetic methodologies developed by our research group will provide unique materials with new properties for chemical sensing, catalysis, etc. and the manufacturing of nanoscale devices and molecular machinery for future technological applications. In addition, based on the chemical properties of gold, which offer a number of medical benefits, our results may also have the potential to contribute to the development of new drugs targeted to cancer, AIDS, malaria etc.
REFERENCES
1. L Lehn JM: Supramolecular chemistry
 state characterization of gold(I) rings with short Au···Au interactions. Spontaneous resolution of a gold(I)
 complex
3. Tunyogi T, Deák A, Tárkányi G, Király P, Pálinkás G: Solvent-assisted spontaneous resolution of a 16-
 membered ring containing gold(I) showing short Au···Au aurophilic interaction and a figure-eight
 conformation
4. Deák A, Tunyogi T, Károly Z, Klébert Sz, Pálinkás G: Guest escape and uptake in nonporous crystals of a
 gold(I) macrocycle
 nitrogen donor linkers in the presence of trifluoroacetate anion: formation of coordination polymer versus
 discrete macrocycle
 unusual ion-exchange properties
7. Jobbágy Cs, Tunyogi T, Pálinkás G, Deák A: A versatile solvent-free mechanochemical route to the synthesis
 of heterometallic dicyanoaurate-based coordination polymers
 INORGANIC CHEMISTRY 50: 7301–7308 (2011)
 multidimensional structures derived from organotin(IV) and dicyanoaurate building blocks: ion exchange,
 luminescence, and gas sorption properties
 GOLD BULLETIN 43: 35–41 (2012)
AZ EGYÜTMŰKÖDÉS TERMÉSZETE

Szabó György, Szolnoki Attila

Az együttműködés átszövi életünket a sejtjeinken belüli folyamatoktól kezdve az emberi és ökológiai közösségek fennmaradását biztosító kölcsönös segítségig.

Az együttműködés lehetőségének azonban szükségszerű kísérője az élősködés. A hagyományos játékelmélet és a darwini evolúció társulásának eredményeképpen létrejött evolúciós játékelmélet egy általános matematikai keretet biztosít a sokszereplős „élő” rendszerek működésében megfigyelhető álaltános jelenségek feltárására a statisztikus fizika eszközeivel.

Az előadás során egyszerű példákkal mutatunk rá számos olyan élethelyzetre, ezeket hívjuk társadalmi dilemmáknak, ahol az egyéni önzés érvényesülhet a közösségi érdek kárára. A jelensésgör játékelméleti megfogalmazásának segítségével azonban sikerült értelmezni számos olyan evolúciós folyamatot és jelenséget, ami magyarázatot ad az együttműködés gyakoriságára az élővilágban és ugyanezek a modellek egyúttal segíthetnek bennünket abban, hogy az együttműködés (vagy tiszteletesség magatartás) közösségi előnyeit érvényesítsük.

Sokszereplős térbeli evolúciós játékelméleti modellek elemzésével példákat mutatunk arra, hogy miképpen segiti az együttműködést az együttműködők csoportosulása, ha utánzásra, vagy a sikeresebb szereplő elterjedésére épülő evolúció vezérli folyamatot. Vizsgáljuk a testvériesség, a büntetés, a kapcsolatrendszerben vagy személyiségi tulajdonságokban mutatkozó különbözőség hatásait illetve a sajátos térbeli szerkezetet kialakító stratégia társulások következményeit.

Az előadás végén röviden vázoljuk azokat a kutatási irányzatokat, amelyek az úgynevezett élő és élettelen rendszerek közötti széles határmezsgye feltárására irányulnak. Ezek az eredmények új szemléletet igényelnek, új kölcsönhatás típusok szisztematikus kutatásának szükségszerűségét hozták felszíre és elkerülhetetné tették a különböző tudományterületek közötti együttműködés erősödését.

IRODALOMJEGYZÉK

1. Szabó Gy: Az együttműködés természete
 MAGYAR TUDOMÁNY 6: 642-652 (2012)
2. Perc M, Szolnoki A: Coevolutionary games - a mini review
 PHYSICS REPORTS 446: 97-216 (2007)
Cooperations penetrate our life from the microscopic (cellular) level to the macroscopic ones when groups of individuals help each other to maintain the whole ecosystem. The evolutionary game theory, a combination of the traditional game theory with the Darwinian evolution, provides a general mathematical framework for the systematic investigation of phenomena in multi-agent living systems with the use of the tools and concepts of statistical physics.

In the present lecture we discuss simple real-life situations, called social dilemmas in the literature of game theory, where the selfish behavior of the individuals yield the tragedy of the common. The latter phenomena have been investigated by simple games for several decades. The evolutionary game theory has highlighted several phenomena and mechanisms explaining the maintenance of cooperation among selfish individuals in biological and social systems. These results help us to find ways how the cooperation can be utilized for the advantage of the whole community.

Considering multi-agent spatial evolutionary games we demonstrate the maintenance of cooperation when fraternity, punishment, presence of diversity in the connectivity structure or personal behaviors, and/or colony formation of cooperators helps their survival during the imitation/spreading of the more successful players. We briefly illustrate examples where the formation of strategy association with a proper spatio-temporal structure promotes the presence of cooperative behavior.

Finally we outline new trends devoted to explore the behaviors in models positioned between the „living” and „non-living” systems. The very recent research has opened new dimensions for the systematic investigation/classification of basic interactions that requires more intim collaborations between the different fields of science.

REFERENCES
1. Szabó Gy: Az együttműködés természete
 MAGYAR TUDOMÁNY 6: 642-652 (2012)
2. Perc M, Szolnoki A: Coevolutionary games - a mini review
 PHYSICS REPORTS 446: 97-216 (2007)
Az előadások összefoglalói
A rendezetlen fehérjék fiziológiás körülmények között sem vesznek fel egy jól meghatározott térszerkezetet; a szerkezet hiánya ellenére azonban gyakran olyan kritikus fontosságú folyamatok irányításában vesznek részt, mint a transzkripció, jelátviteli folyamatok, sejtosztódás és apoptózis (Dyson H.J. és Wright P.E., 2005). Ezen funkciók ellátásában központi szerepe van a bennük található nagyszámú rendezetlen kölcsönható régiónak, melyeken keresztül partner molekulákhoz tudnak kötődni. A kölcsönhatás során a fehérje lokálisan rendeződni tud, és ez különleges tulajdonságokat biztosít a rendezetlen fehérjék funkcionális helyeinek, lehetővé téve a specifikus és mégis tranzíns kölcsönhatásokat. Ezek a tulajdonságok azonban kísérletes szempontból különösen nehezen kutathatóvá teszik a rendezetlen fehérjéket és kölcsönhatásaikat.

A fehérje szekvenciáiban viszonylag rövid régiók által közvetített fehérje-fehérje kölcsönhatások alternatív leírását nyújtja a lineáris motívum modell (Diella F. et al., 2008). Ebben a megközelítésben rövid, konszenzus szekvencia-mintázatokat próbálnak azonosítani különböző fehérjékben, melyeknek van azonos kölcsönható partnerük. Ezek a motívumok leggyakrabban rendezetlen régiókba esnek és a modell szerint ezek a régiók a fehérje többi részétől nagyjából függetlenül képesek a partnerrel való kölcsönhatást kialakítani. Több fehérje-fehérje kölcsönhatás példája megmutatta, hogy gyakran a rendezetlen kötőhelyek szerkezeti megközelítése és a lineáris motívumok szekvencia központú leírása valójában ugyanannak a jelenségnél két aspektusát mutatják. Bár közös példákon keresztül már eddig is sikerült összekapcsolni a két megközelítést, a közöttük lévő kapcsolatot feltérképező, szisztematikus vizsgálatok egyelőre válthatnak magukra.

A két kölcsönhatási modell közötti kapcsolatot jelen munkánkban becsől eljárások segítségével térképezettük fel: a rendezetlen kötőhelyeket az általunk kifejlesztett ANCHOR módszerrel (Mészáros B. et al., 2009), a lineáris motívumokat pedig szekvencia mintázatokkal azonosítottuk. A két módszer átfedésének alapos elemzése egy új, hatékonyabb kötőhely becslő eszközt nyújt, mely nem csak a két vizsgált megközelítés elméleti kapcsolatába enged betekintést, de széleskörű gyakorlati alkalmazásai is lehetségesek (Mészáros B. et al., 2012). A kutatásunk fontosságát olyan példákon keresztül mutatjuk be, ahol ismert lineáris motívumok és rendezetlen kötőhelyek nem csak egybeesnek, hanem a meghibásodásuk közvetlen szerepet játszik a rák kialakulásában.

IRODALOMJEGYZÉK
Intrinsically disordered proteins (IDPs) exist without the presence of a stable tertiary structure in isolation. In spite of their lack of a well-defined structure, these proteins are often involved in the orchestration of critical cellular processes, such as transcription, signal transduction, cell division and apoptosis (Dyson H.J. and Wright P.E., 2005). IDPs can fulfill their roles by harboring a large number of disordered binding regions that can recognize partner molecules by undergoing a coupled folding and binding process. The specific properties of these functional regions give way to specific, yet transient interactions – nevertheless, these properties make their experimental discoveries challenging.

An alternative model of protein-protein interactions with largely overlapping functional properties is offered by the concept of linear interaction motifs (Diella F. et al., 2008). This approach focuses on distilling a short consensus sequence pattern from proteins with a common interaction partner. These motifs often reside in disordered regions and are considered to mediate the interaction roughly independent from the rest of the protein. Although a connection between linear motifs and disordered binding regions has been established through common examples, the complementary nature of the two concepts has yet to be fully explored. In many cases the sequence based definition of linear motifs and the structural context based definition of disordered binding regions describe two aspects of the same phenomenon.

To gain insight into the connection between the two models, prediction methods were utilized. We combined the regular expression based prediction of linear motifs with the disordered binding region prediction method ANCHOR (Mészáros B. et al., 2009), each specialized for either model to get the best of both worlds. The thorough analysis of the overlap of the two methods offers a bioinformatics tool for more efficient binding site prediction that can serve a wide range of practical implications (Mészáros B. et al., 2012). At the same time it can also shed light on the theoretical connection between the two co-existing interaction models.

The importance of our research is demonstrated through examples where the defect of linear motifs and disordered binding regions can be connected to cancer.

REFERENCES
1. Dyson HJ, Wright PE: Intrinsically unstructured proteins and their functions
 NATURE REVIEWS MOLECULAR CELL BIOLOGY 6:197–208 (2005)
 linear motifs and their role in cell signaling and regulation
3. Mészáros B, Simon I, Dosztányi Zs: Prediction of protein binding regions in disordered proteins
4. Mészáros B, Dosztányi Zs, Simon I: Disordered binding regions and linear motifs – bridging the gap between
 two models of molecular recognition prediction of protein binding regions in disordered proteins
 PLOS ONE 7(10):e46829 (2012)
A rendezetlen fehérjék jól definiálható háromdimenziós szerkezettel nem rendelkező proteinek, melyek számos sejtben belüli funkcióban játszanak kulcsszerepet. Proteom szinten a teljes mértékben rendezetlen fehérjék jósolt aránya baktériumokban 1-2%, míg Drosophilában 15-20%. A hosszabb (minimum 30 aminosav), összefüggő rendezetlen szakaszt tartalmazó fehérjék aránya hasonlóan jelentős eltérést mutat, baktériumokban 10-20%, *D. melanogaster* esetén 63%. A bonyolultabb szervezetekben tapasztalható magasabb rendezetlenségi arány összefügg e fehérjék funkcióival is, hiszen elsősorban a sejt működésének finom szabályozásában (transzkripció, jelátvitel) játszanak szerepet. A prokariota/eukariota átmenetben tapasztalható éles különbség felveti a rendezetlen fehérjék hagyományostól eltérő evolúciójának lehetőségét. Bár a rendezetlen fehérjék irodalma az elmúlt 10 év alatt jelentős mértékben növekedett, ezek elsősorban egyes fehérjék vizsgálatát (p53, tau protein), vagy általánosságban a rendezetlenség proteom szintű elemzését taglalják, és nagyon kevés a fehérjék evolúcióját tárgyaló munkák száma. Kutatásaink elsődleges célja a bioinformatika eszközeivel a rendezetlenség kialakulásához, fennmaradásához, vagy éppen eltűnéséhez vezető evolúciós erők felderítése. Vizsgáljuk a rendezetlen fehérjék génjeit, azoknak az átlagostól eltérő változásait, a rendezetlenség előfordulását prokariotákban, illetve olyan szervezeten belüli folyamatokat keresünk, melyekben a rendezetlenség kulcsfontossággal bír, így jól vizsgálható, hogy különböző törzsfejlődési szinteken a rendezetlenség milyen formában jelenik meg. Eredményeink megerősítik korábbi feltételeinket, miszerint a rendezetlenség evolúciós változásait más módszerekkel, más szemlélettel kell kezelni, mint ahogy eddig a globuláris, rendezett fehérjéket kezeltük.
FUNCTIONAL EVOLUTION OF INTRINSICALLY DISORDERED PROTEINS

Lajos Kalmár

Intrinsically disordered proteins (IDP) – without stable tertiary structure – play key roles in several cellular processes, functioning usually as an interaction partner (protein-protein, protein-DNA, protein-RNA). In the proteome level, the frequencies of fully disordered proteins are 1-2% in bacteria and 15-20% in *D. melanogaster*. The frequency of long disordered regions (min. 30 amino acids, as a minimal length for a function) shows similarly different distribution, 10-20% in bacteria and >60% in *D. melanogaster*. The observed elevated disorder frequency in higher organisms is probably related to the function of IDPs, as their primary role is the regulation, fine tuning in different processes (transcriptional regulation, signal transduction). The significant difference between prokaryotes and eukaryotes suggests alternative evolutionary ways characteristic to IDPs. The publications related to protein disorder were grown exponentially in the last 10 years, focused on the characterization of single disordered proteins (p53, tau, etc.) or analyzing the disorder in proteome level, but only a few publications discussed the evolutionary background of protein disorder. The primary aim of our projects is to discover novel alternative pathways lead to the development, maintenance or the disappearance of disordered protein regions, using bioinformatics tools. We are looking for the changes in genes encoding disordered proteins, analyzing the disorder distribution within prokaryotes and searching for cellular processes, where disorder may play key role and can be tracked through different phylogenetic levels. Our results strengthen our presumptions, as we need to change our point of view when working with disordered proteins, as their evolutionary changes are different in several aspects compared to the globular ordered proteins.
A ma ismert genomok legnagyobb része a kanonikus A:T, G:C bázis párokból épül fel. A bázisok közül a timin (T) kitüntetett helyzetű, ugyanis kémiailag szinte következmények nélkül helyettesíthető az ősibb információhordozónak vélt RNS építőkövével, az uracillal (U). A T de novo bioszintezése is kizárólag uracil közöterméken keresztül valósulhat meg. Az U DNS molekulából való kizárása valószínűleg a citozin instabilitása miatt előnyös, amely spontán dezaminációval mutagén hatású uracillal (G:U) alakul. A konzervált dUTP szerkezettel rendelkező enzimcsalád a sejtbeli U/T bázisokat tartalmazó nukleotid arány beállításában játszik létfontosságú szerepet. Ez az arány meghatározza a DNS-be beépülő uracil mennyiségét is. A DNS-beli, a fiziológiához képest megőrült uracil tartalom a különböző élőlényekben különböző következményekkel jár, legsúlyosabb lévén a szabályozott sejthalál.

Kutatásunk célja a dUTPáz enzimcsaládban tartozó enzimek (dUTPáz, dCTP dezamináz és a bifunkciós dCTP dezamináz/dUTPáz) szerkezet-funkció, sejttani és filogenetikai vizsgálatain keresztül megérteni azt, hogy a finomszerkezeti változások és az azokhoz kötődő enzimaktivitás variációk hogyan járulnak hozzá a sejt nukleotid egyensúlyának fenntartásához és DNS-beli uracil-tolerancia javításához. Ehhez változatos kísérleti megközelítéseket alkalmazunk ideértve a tranziens enzimkinetikát, a nagyfelbontású szerkezeti vizsgálatokat, a spektroszkópiai, molekuláris modelllezési és bioinformatikai módszereket, valamint a mikobakteriális modellrendszerben végzett genetikai manipulációt és sejttani vizsgálatokat. Ez utóbbihoz a tuberkulózis baktérium nem-fertőző modelljét, a Mycobacterium smegmatis-t használjuk.

Orvosbiológiai jelentőségén túl a mikobakteriális rendszer azért is előnyös számunkra, mert itt az egyéb timin bioszintetikus útvonalak hiányában a dUTPáz család enzimeinek kitüntetett szerepe van (Pécsi I. et al., 2012). Kimutattuk, hogy a dUTPáz fehérje létfontosságú mikobakteriumokban, és hogy ezért meglepő módon nem a dUTPáz enzimaktivitás hiánya, hanem egy eddig ismeretlen funkciója mikobakterium-szuperspesifikus felszíni hurok a felelős (Pécsi I. et al., 2012). Azt találtuk, hogy a csökken enzimaktivitású dUTPáz mutánsokat kifejező mikobaktérium törzsek genomjában megőrzi az uraciltartalom, és ezt a baktériumok stressz mentes helyzetben jól tolerálják. A különböző DNS-javítási útvonalakat aktiváló stressz faktorokat azonban ezek a törzsek eltérően kezelik (Hirmondó R. et al., előkészületben, 2012).

Feltártuk az enzimcsaládon belül csak a dUTPázokra jellemző P-hurok szerű szerkezeti elem enzimkatalízisben betöltött szerepét (Pécsi I. et al., 2010; Pécsi I. et al., 2011), és azt vizsgáltuk, hogy ez hogyan járul hozzá a nagy szubsztrátspecifitással és korlátozott szabályozhatósággal jellemezhető funkcionális adaptációhoz (Szabó J.E. et al., előkészületben, 2012). Proponáltunk egy újrendszer, általunk „hőkapunak” nevezett mechanizmust arra, ahogyan a szubsztrát dUTP a P-hurokkal látszólag lezárt aktív hely és az oldat között közlekedik (Lopata A. et al., elbírálás alatt). Vizsgáltuk továbbá a Mg²⁺ kofaktor különös, csupán kétszeresére aktiváló katalitikus és szerkezeti szerepét és megállapítottuk, hogy a kétértékű fémion az aktivhelyen konformációs egyenirányító szerepet játszik (Takács E. et al., előkészületben, 2012), a trimer szerkezet központjában pedig az előbb említett funkcionális adaptációhoz járul hozzá (Szabó J.E., et al, előkészületben, 2012).

*Szegedi Tudományegyetem, Kémiai Informatika Tanszék
IRODALOMJEGYZÉK

 PLOS ONE 7: e37461 (2012)

 (előkészületben, 2012)

3. Pécsi I, Leveles I, Harmat V, Vértessy BG, Tóth J: Aromatic stacking between nucleobase and enzyme promotes phosphate ester hydrolysis in dUTPase
 NUCLEIC ACIDS RESEARCH 38: 7179-7186 (2010)

5. Szabó JE, Takács E, Merényi G, Vértessy BG, Tóth J: Trade-off between specificity/performance and cooperative regulation within the dUTPase superfamily
 (előkészületben, 2012)

6. Lopata A, Leveles I, Bendes ÁA, Viskolcz B, Vértessy BG, Jójárt B, Tóth J: Passage through a strip door: nucleotide binding to a hidden active site requires small conformational changes
 NUCLEIC ACIDS RESEARCH (elbírálás alatt)

DNA genomes known today consist of the canonic A:T and G:C base pairs. Thymine (T) is a special nucleobase as it can be replaced with the RNA building block uracil (U) with minor chemical perturbation. The \textit{de novo} biosynthesis of T also occurs through uracil intermediates. The avoidance of U in DNA genomes is probably due to the instability of cytosine which is prone to deamination into mutagenic uracil (G:U). The enzymes having a conserved dUTPase fold play essential roles in setting the intracellular U/T nucleotide ratio. This ratio will, in turn, define the extent of U incorporation into DNA. An increased U content in DNA has various consequences in the various organisms the most severe being programmed cell death.

The objective of our research is to understand the mechanism of balancing the intracellular nucleotide pool and of U-tolerance by the enzymes of the dUTPase superfamily including dUTPases, dCTP deaminases and the bifunctional dCTP deaminase/dUTPases. We aim to do so via structure-function, cell biology and phylogenetics investigations. We use a wide range of approaches to reach our aims including transient enzyme kinetics; high resolution structural studies; spectroscopic, molecular modeling and bioinformatics methods as well as genetic manipulation and cell biology in the \textit{Mycobacterium smegmatis} model system.

In addition to the biomedical relevance of working with a non-pathogenic model of the tuberculosis bacterium, the mycobacterial model is useful for our investigations also due to the unique role of the dUTPase enzymes in these organisms that lack alternative pathways for T biosynthesis (Pécsi I. et al, 2012). We showed that the dUTPase protein is essential for the viability of mycobacteria surprisingly not through its dUTPase activity but via a genus-specific surface loop on the protein (Pécsi I. et al, 2012). We found that mycobacterial strains expressing mutant dUTPases with reduced enzymatic activity display an increase in their genomic U content. This is well tolerated in a stress-free environment, however, under various stresses activating different pathways of DNA repair these strains respond to stress differently and proportionally with the dUTPase activity defect (Hirmondó R. et al., előkészületben, 2012).

We deciphered the role of the P-loop like structural motif in the catalytic mechanism of dUTPases uniquely conferring this motif within the dUTPase superfamily (Pécsi I. et al., 2010; Pécsi I. et al., 2011). We also investigated how this motif contributes to the functional adaptation of dUTPase to high substrate specificity and limited propensity for regulation as opposed to the other members of the enzyme family (Szabó J.E. et al., manuscript preparation, 2012). We proposed a novel mechanism called “strip door” or “heat door” of substrate shuttling between the active site of dUTPase hidden by the P-loop and the solvent (Lopata A. et al., under review). We also investigated the complex role of the Mg$^{2+}$ cofactor in the peculiar twofold activation of dUTPase. A double role was found: the metal ion acts as a conformational rectifier in the active site (Takács E. et al., manuscript preparation, 2012), while in the center of the enzyme homotrimer, it contributes to the aforementioned functional adaptation of certain dUTPases (Szabó J.E. et al., manuscript preparation, 2012).
REFERENCES

 PLOS ONE 7: e37461 (2012)

 (manuscript preparation, 2012)

3. Pécsi I, Leveles I, Harmat V, Vértessey BG, Tóth J: Aromatic stacking between nucleobase and enzyme promotes phosphate ester hydrolysis in dUTPase
 NUCLEIC ACIDS RESEARCH 38: 7179-7186 (2010)

4. Pécsi I, Szabó JE, Adams SD, Simon I, Sellers JR, Vértessey BG, Tóth J: Nucleotide pyrophosphatase employs a P-loop-like motif to enhance catalytic power and NDP/NTP discrimination

5. Szabó JE, Takács E, Merényi G, Vértessey BG, Tóth J: Trade-off between specificity/performance and cooperative regulation within the dUTPase superfamily
 (manuscript preparation, 2012)

6. Lopata A, Leveles I, Bendes AA, Viskolcz B, Vértessey BG, Jójárt B, Tóth J: Passage through a strip door: nucleotide binding to a hidden active site requires small conformational changes
 NUCLEIC ACIDS RESEARCH (under review)

7. Takács E, Lopata A, Jójárt B, Viskolcz B, Vértessey BG, Tóth J: Mg$^{2+}$ facilitates nucleotide hydrolysis as conformational rectifier in dUTPase (manuscript preparation, 2012)
TRANSCRIPTIONAL REGULATION OF THE HUMAN ABCC6 GENE
Caroline Bacquet, Hugues de Boussac, Tamás Arányi, András Váradi

Pseudoxanthoma elasticum (PXE), a rare recessive genetic disease causing skin, eye and cardiovascular lesions is characterized by the calcification of elastic fibers. The disorder is due to loss-of-function mutations of the ABCC6 gene but the pathophysiology of the disease is still not understood. We investigated the transcriptional regulation of the gene, using DNase I hypersensitivity assay followed by luciferase reporter gene assays and chromatin immunoprecipitation (ChIP). We identified DNase I hypersensitive sites (HS) specific to cell lines expressing ABCC6. These sites are located in the proximal promoter and in the first intron of the gene. We observed Hepatocyte Nuclear Factor 4α (HNF4α) and CCAAT/Enhancer binding protein β (C/EBPβ) binding to the proximal promoter and the primate-specific second intronic HS, respectively. We also showed that C/EBPβ interacts with the proximal promoter of the gene and propose that it forms a complex with other regulatory proteins including the previously identified regulatory factor HNF4α. Our data indicate that this complex, which would account for the tissue-specific expression of the gene, is under the negative control of ERK1/2 kinases. ChIP using anti-HNF4α antibodies show a rapid loss of HNF4α binding on the ABCC6 proximal promoter upon treatment with an ERK1/2 activator. Likewise, acetylated forms of histone H3 (Lys 9 and Lys 27) are found enriched in the ABCC6 proximal promoter, this acetylation being lost after stimulation of ERK1/2 activity. Our results point toward a better understanding of the transcriptional regulation of ABCC6.
A nanorészecskék széleskörű alkalmazása révén (elektronikai termékek, kozmetikumok, orvosbiológiai alkalmazás) rohamosan növekszik az emberi szervezetet érintő expozíciójuk.

Ennek ellenére az alkalmazásuk veszélyeiről, szervezetbeli hatásairól és sorsáról hiányosak az ismereteink. A nanorészecskék farmakokinetikája eltér a hagyományos kismolekulájú gyógyszereként a szervezet kémiai védelmi rendszerét, beleértve a májban zajló transzportot és metabolizmust (Rivere JE., 2009). Ezért az eddig alkalmazott farmakokinetikai és toxikológiai vizsgálatok fenntartással alkalmazhatóak.

Egy olyan in vitro rendszert dolgoztunk ki, amely primer hepatociták mellett Kupffer-sejtek is tartalmaz, így alkalmasabb a nanopartikulumok toxikus hatásának modellezésére. Patkány primer hepatocita és hepatocita-Kupffer ko-kultúrában vizsgáltuk a poliamidoamin (PAMAM) 5. generációjú polikationos dendrimer (G5-NH₂), illetve a 4.5. generációjú polianionos (G4.5-CONa) dendrimer toxikus hatását, valamint vizsgáltuk a dendrimerek hatását a penoxirezorufin-O-dealkiláz (PROD, CYP2B) aktivitására. CYP2B induktor vegyületként fenobarbitált (PB), Kupffer-sejt aktivátorként lipopoliszacharidot (LPS) alkalmaztunk.

Az eredmények alapján arra következtettünk, hogy a PAMAM dendrimerek a Kupffer-sejtek aktivációja révén befolyásolhatják, károsíthatják a hepatociták működését. Ez összhangban áll azokkal az irodalmi adatokkal, amelyek szerint a dendrimerek, hasonlóan más nanomegértartományba eső anyagokhoz a májban főleg a Kupffer-sejtekben akkumulálódnak (Liu W. et al., 2011).

IRODALOMJEGYZÉK

1. Riviere JE: Pharmacokinetics of nanomaterials: an overview of carbon nanotubes, fullerene and quantum dots
 NANOMED NANOBIOTECHNOL 1: 26-34 (2009)

 PLOS ONE 6(9): e24406 (2011)
THE USE OF PRIMER HEPATOCYTES AND CO-CULTURES OF HEPATOCYTES AND KUPPFER CELLS FOR HEPATOTOXICITY ASSAYS

Mónika Szabó, Zsuzsa Veres, Katalin Jemnitz

Human and environmental exposure to nanoparticles is increasing due to their widely usage for industrial products, cosmetics and biomedical applications. However, little is known about the risk of their application, such as their effect and fate in the body. The pharmacokinetics and toxicokinetics of nanoparticles differ from that of the classic small drug molecules, they circumvent the chemical defence system in the body, including the transport mechanisms and the first pass metabolism in liver (Rivere J.E., 2009). The classical pharmacokinetic and toxicological studies used so far require caution.

In order to be able to predict toxic effects of nanoparticles, we established an in vitro model based on the co-culturing of Kupffer cells and hepatocytes. We examined the toxicity of generation 5 polycationic (G5-NH₂) and generation 4.5 polyanionic (G4.5-COONa) polyamidoamine (PAMAM) dendrimers and also studied their effect on the induction of pentoxyresorufin-O-dealkylase (PROD, CYP2B) activity in primary rat hepatocytes and co-culture of hepatocytes and Kupffer cells. Phenobarbital (PB) was used as an inducer of CYP2B enzymes and lipopolysaccharide (LPS) as an activator of Kupffer cells. The surface groups of the dendrimers significantly influenced their toxic properties. The G5-NH₂ dendrimer proved to be highly toxic, while the G4.5-COONa derivative did not influence the viability of either cell types, even at 250 μg/ml. In the co-cultures the activation of the Kupffer cells by LPS, as a positive control, drastically decreased the induction of CYP2B by PB. Both dendrimers reduced the induction of CYP2B by PB in co-cultures, while in hepatocyte G4.5-COONa did not influence the rate of induction. Preliminary viability studies confirmed that at 1 μM concentration (applied in the CYP2B induction experiments) the dendrimers were not cytotoxic for either cell type.

Our results indicate that PAMAM dendrimers may alter or even damage the function of hepatocytes through the activation of Kupffer cells. This observation is consistent with previous reports showing that PAMAM dendrimers, such as other nano-scaled materials are mainly trapped by the Kupffer cells in the liver (Liu W. et al., 2011).

REFERENCES
1. Riviere JE: Pharmacokinetics of nanomaterials: an overview of carbon nanotubes, fullerene and quantum dots
 NANOMED NANOBIOTECHNOL 1: 26–34 (2009)
 PLOS ONE 6(9): e24406 (2011)
A sík hullámvezető szenzorok kiválóan alkalmasak felületi jelenségek monitorozására a szilárd-folyadék határfelületek mentén evaneszczens optikai hullámok felhasználásával. A módszer előnye nagy érzékenysége, kiváló időfelbontása és jelölésmentessége. Az előadás áttekinti legújabb eredményeinket a
(i) funkcionális nanofilmek önszerveződésének monitorozása és a kialakított rétegeken
(ii) bakteriális és emlős sejtek adhéziójának nyomon követése területén.

OPTICAL BIOSENSORS: NOVEL CONFIGURATIONS AND THEIR APPLICATION
Róbert Horváth

Az izolálási módszerünk viszonylag nagy mennyiségű plazma minták frakcionálását és több glikoprotein vizsgálatát teszi lehetővé. A módszert alkalmazva a plazmában nagy mennyiségben jelenlévő fehérjék glikozilációs mintázatát sikerült meghatározni. Tervezzük a plazma minorkomponenseit is vizsgálni, ezért a módszerünket továbbfejlesztjük: a jelenlegi analitikai oszlop helyett egy félpreparatív oszlopot tesztelünk, melynek kapacitása nagyobb.
Because of the fast development of mass spectrometry and bioinformatics the determination of amino acid sequence of proteins is a routine method. However, glycosylation processes (and other post-translational modifications of proteins) result several glycoforms. The concentration of these glycoforms in human blood plasma is very low, and plasma contains a wide range of proteins and other components as well. In this complex biological system, the study of glycosylation pattern of proteins without special sample preparation methods is very difficult. Therefore, glycoproteomic analysis requires extensive protein isolation and plasma fractionation.

In correlation with clinical glycoprotein biomarker studies, we would like to develop a plasma fractionation method for the simultaneous characterization of glycosylation pattern of several plasma proteins. Common fractionation methods, such as ion-exchange chromatography and gel electrophoresis cannot be used for glycoprotein isolation, because they separate the different glycoforms of a single protein from each other. Therefore, we use reversed phase chromatography with macroporous columns special designed for intact protein fractionation. Separation in reversed phase chromatographic system is based on hydrophobicity, and it makes possible to analyze the glycosylation pattern of single proteins from a single HPLC fraction.

Our isolation method allows the fractionation of relatively high amount of blood plasma samples and the analysis of several glycoproteins from plasma samples. Applying this method we have successfully determined the glycosylation pattern of high abundant glycoproteins from blood plasma. We also would like to characterize glycosylation pattern of minor components from plasma, therefore we are developing our method further: instead of the present analytical column, we are testing a semi-preparative column with higher capacity.
Az ezüst hatékony biocid, melynek különféle bevonatokban való alkalmazása nagy potenciált hordoz magában (egészségügy, élelmiszeripar, hajózás, stb.). A hordozórétegből kioldódva fejti ki hatását ionos vagy fémes-nano formában. Magas ára fontossá teszi a túl nagy sebességű kijutódás elkerülését. Lassított leadás elérésével azonos hatóanyag-tartalom mellett hosszabb hasznos élettartamú bevonatokat állíthatunk elő.

Munkánk célja az volt, hogy megfelelő szerkezetű mátrixanyagba való bezárásával, mikrokapszulázásával biztosítsuk az ezüst mérsékelt sebességű kijutását, és így bevonatokban alkalmazható adaléket állítsunk elő. Ismert, hogy számos biopolimer (alginát, kitozán, zselatin stb.) oldata kiváló komplexképzője és redukáló ágense az ezüstitonoknak, s az ezen oldatokból készülő gélek (tömbök, szálak, kapszulák) szük méret- és egyenletes térbeli eloszlással zárják magukba a nanoezüstöt. Ezért a kapszulák mátrix anyágául a zselatint választottuk.

IRODALOMJEGYZÉK

 PROGRESS IN ORGANIC COATINGS 72: 52-57 (2011)
Silver is an efficient biocide which has great potential in coating-applications e.g. sanitation, food industry, shipping. It takes effect when leaching from coatings in ionic as well as nano sized metallic form. Because of its high value, avoiding fast and burst release of silver is important. By realization of slow-release phenomena, larger useful coating lifetime can be achieved with the same amount of active material.

The aim of our work was to microencapsulate silver into the proper matrix structure, ensuring the slow release of silver and so elaborating an additive applicable in paints. It is known that numerous biopolymer (alginate, chitosan, gelatine) solution act as excellent capping and reducing agent to silver ions. Thus gels obtained from these solutions (in bulk, fibre or capsule form) contain well-dispersed silver nanoparticles of narrow size distribution. Considering this fact, gelatine was chosen for the matrix material of microcapsules.

Microcapsules were prepared by water-in-oil dispersion polymerization (Szabó, T. et al., 2011). In dispersed aqueous phase gelatine was cross-linked by formaldehyde, together with urea in order to minimize swelling. The precursor of active material silver nanoparticles was silver nitrate (also dissolved in the aqueous phase).

With our method microcapsules with the required size and swelling were obtained, suitable for coating application. The microcapsules contain 20 nm size metallic silver nanoparticles homogenously dispersed in their matrix. The cross-linking procedure reduced the release rate of ionic silver that was demonstrable by dissolution tests where silver release from microcapsules themselves and from coatings embedded with microcapsules was measured. Fouling test of paints with microencapsulated silver resulted in prolonged anti-fouling efficiency.

REFERENCE
 PROGRESS IN ORGANIC COATINGS 72: 52-57 (2011)
Az utóbbi években jelentősen nőtt az érdeklődés a politejsavval (PLA) kapcsolatban mind a tudományos élet szereplői, mind pedig az ipar részéről. Ennek elsődleges oka, hogy ez a polimer valódi alternatívát jelenthet a hagyományos műanyagokkal szemben. Ahhoz azonban, hogy az egyes felhasználási területeken az anyagokkal szemben támasztott magas elvárásoknak megfeleljen, mindenképp szükséges a PLA módosítása. Jelen munkánkban a politejsav/poliuretán ütésállóságának javítását tűztük ki célul, amit poliéter poliuretán elasztomerekkel (PU) való társítás útján valósítottunk meg.

Két különböző módon állítottunk elő keverékeket: a konszekutív eljárás esetében a poliuretan előállítását követően végeztük el a PLA-val történő homogenizálást, míg a reaktív feldolgozás esetében a PU szintézise politejsav ömlkedében zajlott. Feltételeztük, hogy ez utóbbi módszer eredményeképp a diizocianát komponens reagál a PLA végcsoportjaival, PLA-g-PU blokk kopolimereket hozva létre, ezáltal javítva a fázisok összeférhetőségét. A keverékeket széleskörűen jellemeztük, különös tekintettel a határfelületi kölcsönhatásokra, morfológiára és mechanikai tulajdonságokra.

![Image](image-url)

1. ábra PLA-PU keverékek morfológiája: konszekutív (a) és reaktív feldolgozás (b); SEM felvételek, 5000x nagyítás

Eredményeink alapján kijelenthetjük, hogy sikeresen állítottunk elő PLA-g-PU kopolimereket reaktív feldolgozással, ennek eredményeképp jóval előnyösebb fázisszerkezetet hozva létre:

- a diszpergált fázis eloszlása egyenletesebben, szemcseméreté pedig jelentősen kisebb (1. ábra).
- A reaktív keverékek számos kedvező tulajdonságuknak köszönhetően várhatóan alkalmazak lehetnek a PLA ütésállóságának javítására.
IMPACT MODIFICATION OF PLA WITH POLYURETHANE ELASTOMERS
Dániel Bedő, Balázs Imre, Béla Pukánszky

Both industrial and scientific interest in poly(lactic acid) (PLA) increased in recent years for various reasons; hopes are rising that this material may represent an alternative to commodity polymers. In order to meet the specific requirements of different application areas, modification of PLA is inevitable. The present work focuses on the modification of poly(lactic acid) via blending with polyether type polyurethane elastomers (PU).

Blends were obtained with two different processing methods: consecutive process, i.e. the polymerization of the PU followed by blending with PLA, and reactive blending, i.e. polymerization of the polyurethane in poly(lactic acid) melt. In the case of this latter, the basic idea was the coupling of the components through the isocyanate group reacting with the hydroxyl and carboxyl end-groups of poly(lactic acid), which results in the formation of grafted PLA-g-PU copolymers acting as compatibilizer. The blends were characterized with various techniques in order to determine interfacial adhesion, morphology, and mechanical properties.

Our results indicate the successful grafting of the polyurethane elastomer to PLA, which results in the formation of smaller and better dispersed particles in the poly(lactic acid) matrix (Fig. 1). These materials possess quite advantageous properties compared to conventional blends, and are expected to be highly suitable for the improvement of the impact resistance of poly(lactic acid).
Az elmúlt években az érdeklődés középpontjába kerültek a nukleotidokat felismerő molekulák, mivel a nukleotidok alapvető fontosságúak például a DNS és RNS szintézisénél valamint a sejtek energiaházértékelésében, ugyanakkor kevés olyan teszt létezik, amellyel gyorsan és szelektíven meghatározhatók (Wang D. et al., 2010).

Kutatásaink során podand típusú szenzorokat vizsgáltunk. A podandok felépítésüket tekintve egy távtartó egységből (spacer) állnak, melyhez kapcsolódik két vagy több 'kar', amelyeken található egy molekula felismerő rész, valamint a detektáláshoz szükséges fluorofór csoport. Vizsgálataim során kétkarú szenzorokkal dolgoztam.

A szenzor molekuláink úgynevezett 'turn-on' fluoreszcenciát mutatnak bizonyos nukleozid-polifoszfátok jelenléteben. A fluoreszcencia-színképek alapján jellemeztem a szenzorok komplexképzését ATP, ADP, AMP, GTP, UTP, UDP nukleotidokkal, és az élő szervezetekben nagyobb koncentrációban lévő ionok zavaró ionok hatását. A vizsgált szenzorok közül I. (1. ábra) kedvező ATP-szenzornak bizonyult, mind az érzékenység, mind a szelektivitás tekintetében: hasonlóan stabil az ATP és GTP komplexe, kevésbé stabil az UTP-komplexe, a többi vizsgált nukleotiddal lényegesen gyengébb a kölcsönhatása (2. ábra) (Czirok J.B. et al., benyújtva).

További célunk, a szenzor molekulák és a nukleotidok reakcióinak jellemzését követően - az MFI neurokémikusaival együttműködve – megvizsgálni a szenzor alkalmazhatóságát idegsejtekben lejátszódó folyamatok vizsgálatában.

* BME Szerves Kémia és Technológia Tanszék

IRODALOMJEGYZÉK

A NEW FLUORESCENT SENSOR FOR DETERMINATION OF NUCLEOSIDE POLYPHOSPHATES

Dóra Hessz, Péter Baranyai, István Bitter*, László Héja, Julianna Kardos, Miklós Kubinyi

In the past decades a great attention has been focused on the molecular recognition of nucleoside polyphosphates because they play a major role in several key biological processes as the building blocks of DNA and RNA, and the energy carriers in living cells. There are, however, only a few tests for the measurement of the concentration of nucleotides, which are fast and selective (Wang D. et al., 2010).

We studied novel fluorescent nucleotide receptors, with podand structure. The podands consist of a spacer and two or more arms, the latters include a receptor site and a marker unit – which is a fluorophor group in our case.

![Figure 1 Structure of sensor I.](image1)

![Figure 2 Fluorescence spectra of sensor I on the presence of various nucleotides](image2)

Our sensors show ‘turn-on’ fluorescence in the presence of some nucleoside-polyphosphates. Comparing the spectral changes upon the addition of ATP, ADP, AMP GTP, UTP and UDP nucleotides to the aqueous solutions of our sensors, one of the sensors (Fig. 1) was found sensitive to ATP and GTP, less sensitive to UTP, whereas the other nucleotides did not cause any significant spectral variation (see Fig. 2) (Czirok J.B. et al., submitted).

The goals of the present work are to describe the reaction between the new receptors and nucleotides on the basis of spectroscopic experiments, and – in cooperation with the neurochemists of the Institute of Molecular Pharmacology - to study the usability of the best performing sensor for the examination of processes in nerve-cells.

* Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary

REFERENCES

1. Wang D, Zhang X, He C, Duan C: Aminonaphthalimide-based imidazolium podands for turn-on fluorescence sensing of nucleoside polyphosphates
 ORGANIC AND BIOMOLECULAR CHEMISTRY 8: 2923-2925 (2010)
 SENSORS AND ACTUATORS: B CHEMICAL (submitted, 2012)
OLDATEGYENSÜLYI ÉS SZERKEZETI ADATOK MEGHATÁROZÁSA ESR-SPEKTROSZKÓPIAI MÓDSZERREL; A SZALICILALDEHID SZEMIKARBazon KOMPLEXKÉPZÉSE RÉZ(II) ÉS OXOVANÁDium(IV) IONOkkal

Nagy Nóra Veronika, Enyedy Éva Anna*, Bognár M. Gabriella*, Kiss Tamás*, Dinorah Gambino**

Az elektronspinrezonancia spektroszkópia (ESR) módszert széles körben alkalmazzák paramágneses fémionok (Fe(III), VO(IV), Cu(II), Mn(II), Co(II), stb.) vizsgálatára biológiai rendszerekben. Fémionok komplexképzését tanulmányozzák fémionok feldúsulásával járó betegségek (Alzheimer-kór, Wilson-kór) vizsgálatában vagy metalloenzimek fémkötőhelyének modellezésében, illetve egyre gyakrabban az izotóp-diagnosztikában és radionuklid terápiában használatos un. kontrasztanyagok vizsgálatában. A fémkomplexek vizsgálatának további hajtóereje, hogy néhány esetben a komplexképzés jelentősen megnöveli a bioligandumok aktivitását. A tioszemikarazon és szemikarazon vegyületek esetén is ilyen hatás mutatható ki. A rákellenes hatású Triapin (3-aminopiridin-2-karboxaldehid tioszemikarazon) és fémkomplexei erős gátló hatást fejtik ki a ribonukleotid reduktáz enzimre amely a DNS szintézisben játszik szerepet (Shao J. et al., 2006). A fémkomplexek izolálása és szilárd fázisú tanulmányozása mellett elengedhetetlen ezeknek a vegyületeknek az oldategyensúlyi vizsgálata amely pontosabb képet ad a fiziológiás körülmények között képződő komplexek egyensúlyi eloszlásáról, szerkezetéről és termodinamikai stabilitásáról.

*Szegedi Tudományegyetem Szervetlen és Analitikai Kémia Tanszék
**Facultad de Química, Universidad de La República, Montevideo, Uruguay
IRODALOMJEGYZÉK

The electrospin resonance spectroscopy (EPR) is widely used to study paramagnetic metal ions (e.g., Fe(III), VO(IV), Cu(II), Mn(II), Co(II), etc.) in biological systems. For diseases in which metal accumulation plays an important role (e.g., Alzheimer or Wilson disease), complexation of metal ions is examined as possible therapeutic treatment. Furthermore, metal complexes are used to model the active centre of metalloenzymes and nowadays they have increasing role in isotop diagnostic and radionuclid therapy, as contrast agents. It has been also found that the biological effect of some bioligands can be enhanced by their complex formation with metal ions, which is the case for several semicarbazone and tiosemicarbazone derivatives. For example, the Triapine (3-aminopiridin-2-carboxaldehyde tiosemicarbazone) and its metal complexes are strong inhibitor of the enzyme ribonucleotid reductase which plays role in DNA synthesis (Shao J. et al., 2006). So far isolation of single crystals gave the only possibility to study the structures of these complexes however the solution study of these complex equilibria under physiological conditions is indispensable in the understanding of structure function relationship of these bioactive molecules. We aim to study the complex equilibrium system formed by salicilaldehyde semicarbazone (SSC) and copper(II) or oxovanadium(IV) and determine the distribution, thermodynamic stability and coordination modes of the detected complexes in 30 v/v % DMSO/aqua solution. Beside the pH-potentiometric and UV-Vis spectroscopic methods EPR gave crucial contributions to the determination of formation constants and coordinations of the species formed in the solutions, as well resolved EPR spectra contain detailed information about the surrounding of paramagnetic metal centres (Rockenbauer A. et al., 2001). Further information was gained from EPR spectra recorded in frozen solution (77 K) from which anisotropic parameters have been determined. The complexes [CuL]⁺ and [CuLH₁] have been specified in system copper(II) – SSC while the complexes [VOL]⁺, [VOLH₁] and [VOLH₂]⁻ was found in system VO(IV) – SSC system beside the aqua complexes of the metal ions. Formation constants and coordination modes of these species have been determined (Milunovic M.N.M. et al., 2012).
REFERENCES
AMINOSAVAK ÉS ENDOMORFIN ANALÓG TETRAPEPTIDEK
SZTEREOSZELEKTÍV ELVÁLASZTÁSA KAPILLÁRIS ELEKTROFORÉZISSEL
Németh Krisztina, Nagy-Domonkos Celesztina, Sarnyai Virág, Visy Júlia

Két amfoter sajátságú molekulacsalád tagjait (apoláros és savas oldalláncú danzila-
aminosavakat (Dns-AS), endomorfin-1-et és -2-öt, valamint ezek biológiailag aktív,
diasztereomer tetrapeptid származékait) választottuk el sztereoszelektíven kapilláris
elektroforézis technikával, különböző típusú β-ciklodextrin származékok (BCD)
alkalmazásával.

Méréseink szerint a vizsgált Dns-AS-ak izoelektromos pontja pH 3,5-3,8, míg a
tetrapeptideké 8,3-8,9 közötti értéket mutatott. Így a királis szelektorok közül, a Dns-AS-ak
esetében két – közelmúltban kifejlesztett- kationos CD-re, az izomertiszta permetil-
monoamino-BCD-re és a random metilezett-monoamino-BCD-re, valamint semleges
analógjaikra (permetil-BCD, random-metilezett-BCD) esett a választásunk. Az endomorfin
származékok esetében pedig semleges (permetil-BCD, hidroxi-propil-BCD) és anionos CD-
ket (karboximetil-BCD, szulfobutiléter-BCD) használtunk. Az elválasztások hatékonyságának
érdekében az analitok és az alkalmazott CD-ek komplexeinek stabilitási állandóját és
mozgékonysságát is meghatároztuk, valamint vizsgáltuk az elválasztások pH- és CD
koncentráció-függését.

Munkánk eredményeképpen megoldottuk minden vizsgált anyag sztereoszelektív
elválasztását. Dns-AS keverékeket is sikeresen elválasztottuk, hogy bemutassuk módszerünk
alkalmazhatóságát biológiai-, környezeti- vagy élelmiszer minták esetében is.

Köszönjük az endomorfin mintát Prof. Péter Antalnak (Szegedi Tudományegyetem,
Szervetlen és Analitikai Tanszék), a CD-szelektorokat a CycloLab Kft.-nek (Dr. Jicsinszky
László); és az anyagi támogatást a Jedlik Ányos Pályázatnak (NKFP_A3-2008-0211
NATURSEP).
STEREOSELECTIVE ANALYSIS OF AMINO ACIDS AND ENDOMORPHIN ANALOGUE TETRAPEPTIDES BY CAPILLARY ELECTROPHORESIS
Krisztina Németh, Celesztina Nagy-Domonkos, Virág Sarnyai, Júlia Visy

Stereoselective separations of members of two amphoteric molecule families (dansylated amino acids (Dns-AA) with apolar or acidic side chains, endomorphin-1 and -2 and their biologically active diastereomeric tetrapeptide analogues) have been accomplished by capillary electrophoresis applying β-cyclodextrin derivatives (BCD) as selectors. The measured isoelectric point values were between pH 3.5-3.8 for the Dns-AAs, and 8.3-8.9 for the tetrapeptides. Accordingly, two –recently developed- cationic CDs, namely the permethylated monoamino BCD and the randomly methylated monoamino BCD and their neutral analogues (permethylated-BCD and randomly methylated BCD) were chosen as selectors for Dns-AAs. In case of the endomorphin analogues neutral CDs (permetylated-BCD and hydroxyl propylated BCD) or anionic ones (carboxymethylated-BCD or sulfobuthyl ether BCD) were applied for the stereoselective analyses. In order to improve the resolutions the complex stability constants and the mobilities of the complexes were determined and in addition the pH and the CD concentrations were optimized. Consequently, good chiral separations of each investigated analyte could be carried out. Furthermore, mixtures of the Dns-AAs were successfully separated as a model of the real biological, environmental and food samples.

We gratefully acknowledge Prof. Antal Péter (Department of Inorganic and Analytical Chemistry, University of Szeged) for the endomorphin samples as well as the CycloLab R&D Ltd. (Dr. László Jicsinzky); for the CD selectors, and the Jedlik Ányos Grant (NKFP_A3-2008-0211 NATURSEP) for the financial support.
HEPARIN OLIGOSZACHARIDOK SZINTÉZISE
ORTOGONÁLIS VÉDŐCSOPORT STRATÉGIÁVAL
Jakab Zsolt, Fügedi Péter

Célunk ezen nagyszámú oligoszacharidok előállítása ortogonális védőcsoport stratégia alkalmazásával, amely egyszerűbbé tenné szintézisüket. Kutatócsoportunk már korábban bizonyította ennek a stratégiának az alkalmazhatóságát (Fügedi P., 2003). A célvegyületekben a szulfát csoportok irányított bevitele benzoil, 4-metoxifenil és 1-naftilméthil ideiglenes védőcsoportok ortogonalitásán alapul. A célvegyületek előállíthatóak egyetlen központi védett intermedierből, ugyanis a korábban említett védőcsoportok szelektíven eltávolíthatóak egymás mellől, lehetőséget biztosítva a szulfát csoportok megfelelő helyre történő beviteléhez.

![Diagram](image)

1.ábra Szintetizált heparin oligoszacharidok

IRODALOMJEGYZÉK
1. Capila I, Linhardt RJ: Heparin-Protein Interaction
2. Fügedi P: The potential of the molecular diversity of heparin and heparan sulfate for drug development
SYNTHESIS OF HEPARIN OLIGOSACCHARIDES BASED ON ORTHOGONAL PROTECTING GROUP STRATEGY
Zsolt Jakab, Péter Fügedi

The structurally related heparin (H) and heparan sulfate (HS), members of the glycosaminoglycan family of polysaccharides, interact with a large number of proteins of diverse biological functions. It is known that specific oligosaccharide structures within the heterogeneous polysaccharide chains are responsible for the binding to individual proteins. Heparin–protein interactions modulate the biological activities of these proteins (Capila I. and Linhardt R.J., 2002). For the elucidation of H and HS fragments responsible for specific binding to proteins resulting in the different biological activities structurally well-defined oligosaccharides are required (Fügedi P., 2003).

One of our main goal is to synthesize a variety of heparin oligosaccharides with orthogonal protecting group strategy. All the sulfated oligosaccharides are prepared from a common, orthogonally protected derivative having (1-naphthyl)methyl, (4-methoxy)phenyl and benzoyl groups.

Figure 1 The target heparin oligosaccharides

REFERENCES
Napjainkban a külső hatásra (hő, fény, oldószer, mechanikai erő, stb.) érzékenyen reagáló, azaz valamilyen tulajdonságukat megváltoztató ún. hasznos anyagok gyakorlati felhasználásuk okán (szenzorok, biztonsági tinták) széleskörű kutatási érdeklődésre tartanak számot. A szerkezet és tulajdonságok közötti összefüggéseknek a jobb megértéséhez elengedhetetlenül fontos a szilárdfázisban megvalósuló molekulaszerveződési elvek megismerése, melyek a későbbiekben elvezethetnek ezeknek a hasznos anyagoknak a tudatos tervezéséhez (Sagara Y. és Kato T., 2009). Előállítottuk és kikristályosítottuk a kétszínű arany(I) komplex kétféle módosulatát és szerkezetüket egykristály röntgendiffrakcióval meghatároztuk. 365 nm-es UV-fénnyel megvilágítva az egyik módosulat intenzív kékes-zöld, míg a másik halvány rózsaszínes lumineszcenciát mutatott. A korábbiakban előállított oldószergőzők hatására intenzív színváltozást mutató vaporkróm szupramolekuláris arany(I) komplexekkel szemben (Jobbágy Cs. et al., 2011), ezek a kétszínű arany(I) vegyületek oldószergőzők jelenlétében nem változtatták meg a színüket. Azt találtuk viszont, hogy mechanikai erő hatására (mozsárban őrölve) a kétszínű arany(I) komplex kékes lumineszcenciája intenzív narancspiros színűvé változik. Oldószergőzők hatására, ez a narancspiros lumineszcencia visszaalakul a kezdeti kék színűvé (1. ábra). Hasonló mechanokróm lumineszcenciát az irodalomban csak néhány arany(I) komplex esetében figyelték meg (Blach A.L., 2009). A kristály szerkezetek értelmezésével, kapcsolatot találtunk a kristályban megvalósuló molekuláris szerveződés és a lumineszcens tulajdonságok között.

A mechanokróm lumineszcencia alaposabb megértése érdekében tovább tanulmányozzuk, hogy a kétszínű arany(I) komplex szerkezetének jelentékeny módosításával hogyan befolyásolható a külső hatásokra adott lumineszcens válasz.

IRODALOMJEGYZÉK

1. Sagara Y, Kato T: Mechanically induced luminescence changes in molecular assemblies
 NATURE CHEMISTRY 1: 605–610 (2009)
2. Jobbágy Cs, Tunyogi T, Pálnkás G, Deák A: A versatile solvent-free mechanochemical route to the
 synthesis of heterometallic dicyanoaurate-based coordination polymers
 INORGANIC CHEMISTRY 50: 7301–7308 (2011)
3. Balch AL: Dynamic crystals: visually detected mechanochemical changes in the luminescence of gold and
 other transition-metal complexes
A GOLD(I) MACROCYCLE SHOWING FLUORESCENT COLOR CHANGE IN RESPONSE TO EXTERNAL STIMULI

Csaba Jobbágy, Miklós Molnár, Péter Baranyai, Andrea Deák

Stimuli-responsive materials responding to external stimuli, such as: heat, light, solvent, mechanical force, etc. are of great scientific interest owing to their potential applications (sensors and security inks). The in-depth understanding on how the molecular stacking influences the solid-state properties it is essential in the establishment of meaningful structure-property relationships. This can contribute to the development of novel stimuli-responsive smart material (Sagara Y. and Kato T., 2009).

We have synthesized, crystallized and structurally characterized by single crystal X-ray diffraction two different solvates of a binuclear gold(I) complex. Upon irradiation with 365 nm UV light, the acicular, needle-like crystals exhibit pale pink, while the larger bladed crystals a bluish-green emission. In contrast to the previously synthesized vapochromic gold(I) supramolecular complexes (Jobbágy Cs. et al., 2011), these binuclear gold(I) compounds showed no colour change in the presence of solvent vapours. However, in response to mechanical stimuli (grinding in a mortar with a pestle) the bluish luminescent crystals change their emission colour into orange-red (Fig. 1). This mechanically ground orange-emitting powder returns to the original blue-emitting one by fuming with solvent vapours. To our knowledge, only a few examples of mechanochromic luminescent gold(I) complexes have been reported so far (Balch A.L., 2009). Based on crystal structures, a correlation between molecular packing and luminescence properties has been found.

Figure 1

Now, we focus on understanding the factors that influence the mechanochromic luminescent response of these binuclear gold(I) complexes and on studies aimed at fine tuning of the molecular and crystal structures.

REFERENCES

1. Sagara Y, Kato T: Mechanically induced luminescence changes in molecular assemblies
NATURE CHEMISTRY 1: 605–610 (2009)

2. Jobbágy Cs, Tunyogi T, Pálinkás G, Deák A: A versatile solvent-free mechanochemical route to the synthesis of heterometallic dicyanoaurate-based coordination polymers
INORGANIC CHEMISTRY 50: 7301–7308 (2011)

3. Balch AL: Dynamic crystals: visually detected mechanochemical changes in the luminescence of gold and other transition-metal complexes
KIRÁLIS ÉPÍTŐELEMENTEK FEJLESZTÉSE TERPENOIDOK SZINTÉZISÉHEZ
Molnár Laura, Berkes Barbara, Ozsváth Kristóf, Soós Tibor

A terpenoidok a természetes anyagok egyik legnagyobb és szerkezetileg legváltozatosabb családját alkotják. Ennek egyik oka tulajdonképpen a biológiai szintézisük, amely több fázisból áll, amelyeknek mindegyikében lehetőség van a szerkezeti diverzitás növelésére. A főbb lépések a C5 izoprén egységek összekapcsolódása, majd ezek ciklizációja, s végül a képződött CH vegyület szelektív oxidációja. A nagyfokú szerkezeti változatossága azt eredményezi, hogy számos terpenoid gyógyászati szempontból értékes biológiai aktivitást mutat, s így például a népi gyógyászatban alkalmazott hatóanyagok jelentős része is terpenoid. Kiemelkedő közülük a rákellenes, baktericid, immunmodulátor, vírusölő és antineurodegeneratív hatású vegyületek.

Széleskörű biológiai hatásuk ellenére azonban a gyógyszeripar csak elvétve (pl. Taxol) aknázza ki e vegyületekben rejlő potenciált. Ennek egyik oka az, hogy előállításuk általában bonyolult, ugyanis policiklusos gyűrűrendszereik több sztereocentrumot tartalmaznak, ráadásul ezek közül több kvaterner centrum. Így szintézisüket legtöbbször a hosszú és bonyolult szintézisút jellemzi, s gyakran használnak olyan reagenseket, illetve katalizátorokat az előállítás során (pl. szelén vegyületek), amely ipari méretű szintézisekre nem alkalmasak.

Éppen ezért a kutatók számára mind a mai napig kiemelkedően fontos kihívást jelent olyan módszerek fejlesztése, illetve királis „building-block”-ok előállítása, amelyek segítségével hatékonyan, akár méret növelhető módon lehet kialakítani a policiklusos gyűrűrendszereket és ugyanakkor a szintézisút megengedi a molekula további funkcionalizálását is. Eddig két szintetikus „building-block”-ot alkalmaztak a terpenoidok szintézisében: a Wieland-Mischer ketont, valamint a Hagemann észtert.

Kutatásaink célja egy új, az eddig alkalmazott építőelemek lehetőségeit is meghaladó vegyület kialakítása, amely a terpenoidokban gyakran előforduló „pattern” kialakítására alkalmas. Ennek érdekében egy új szintetikus „building-blockot” fejlesztettünk ki és tanulmányoztuk tovább alakíthatóságukat is.
Terpenoids form one of the largest and structurally most diverse family of natural materials. One of the reasons of this diversity lies in their biological synthesis, which consists of more phases, and in each phase, it is possible to increase the structural diversity. The main steps are the joining of C5 isoprene units, the cyclization and finally the selective oxidation of the resultant compound. Thanks to the high degree of structural diversity, many terpenoids show therapeutically valuable biological activity, and a significant part of active ingredients used in folk medicine are also terpenoids. Among these activities, the anticancer, antibacterial, immunomodulatory, antiviral and antineurodegenerative compounds are outstanding. However, despite of the wide range of biological activity, in the pharmaceutical industry the potential of these compounds is only occasionally exploited (eg Taxol).

One reason for their absence is the difficult synthesis of these compounds. Their polycyclic ring systems containing multiple stereogenic centers, several of them even being quaternary centers, are hard to construct. Thus, their synthesis are usually characterized by long and complicated routes, and during the processes reagents or catalysts (such as selenium compounds) are often used, which are not suitable for large scale synthesis. Therefore, it is an extremely important challenge for researchers to develop effective and scaleable methods for the synthesis of chiral building-blocks, which contain polycyclic ring system, and at the same time the synthetic route allows further functionalization of the molecule. Previously used synthetic building-blocks in the synthesis of terpenoids are Wieland-Mischer ketone and Hagemann ester.

Our aim is to develop a new compound with properties that exceed the previously used building-blocks and is capable of creating the „pattern” usually found in terpenoids. To this end, a new synthetic building-blocks has been developed and its formability has been investigated as well.
ALDEHIDEK ÉS NITROALKÉNEK MICHAEL-ADDÍCIÓS REAKCIÓI:
A "PAUSE & PLAY" MECHANIZMUS FELDERÍTÉSE
Pápai Imre, Madarász Ádám, Gokarneswar Sahoo*, Petri Pihko*

Egy magyar-finn ERA Chemistry projekt keretében organokatalitikus folyamatok reakciómechanizmusát tanulmányozzuk elméleti és kísérleti módszerek közös alkalmazásával. A kutatások alapvető célja új, hatékony katalizátorok tervezése és szintetikus megvalósítása, illetve gyakorlati alkalmazása (Rahaman H. et al., 2011; Probst N. et al., 2012).

Aldehidek és nitroalkének asszimetrikus Michael-addícióját egyszerű prolinol-származékok általában jól katalizálják, de α-szubsztituált nitroalkének esetében a reaktivitás jelentősen lecsökkent. Kvantumkémiai számításaink szerint a katalitikus folyamatot egy gyűrűs intermedier gátolja (1. ábra), melynek sztereoszelektív protonálásával (savas ko-katalizátorok alkalmazásával) a reakció továbbhaladhat a Michael termék irányába (Sahoo G. et al., 2012).

A feltételezett köztiterméket NMR spektroszkópiai mérésekkel is azonosítottuk.

1. ábra A "pause & play" mechanizmus egyszerűsített sémája

Preparatív szempontból a p-nitrofenol bizonyult a legelőnyösebb ko-katalizátornak, és alkalmazásával számos γ-nitroaldehid vegyületet sikerült kitűnő enantio- és diaszteree-szelektivitással előállítani (Sahoo G. et al., 2012).

*Department of Chemistry, Nanoscience Center, University of Jyväskylä, Finland

IRODALOMJEGYZÉK
1. Rahaman H, Madarász Á, Pápai I, Pihko PM: Dual hydrogen-bond/enamine catalysis enables a direct enantioselective three-component domino reaction
ANGEWANDTE CHEMISTRY INTERNATIONAL EDITION 50: 6123-6127 (2011)
ANGEWANDTE CHEMISTRY INTERNATIONAL EDITION 51: 8495-8499 (2012)
ANGEWANDTE CHEMISTRY INTERNATIONAL EDITION (elfogadva, 2012) (DOI: 10.1002/anie.201204833)
ORGANOCATALYTIC MICHAEL ADDITION OF ALDEHYDES TO NITROALKENES: THE "PAUSE & PLAY" MECHANISM

Imre Pápai, Ádám Madarász, Gokarneswar Sahoo*, Petri Pihko*

The reaction mechanism of organocatalytic processes are examined using a combination of computational and experimental approaches within the framework of an ERA Chemistry project. The principal goal of our research program is to provide mechanistic insight and to develop new catalysts for practical applications (Rahaman H. et al., 2011; Probst N. et al., 2012).

The asymmetric Michael addition of aldehydes to nitroalkenes are usually catalyzed effectively by simple prolinol derivatives, however, α-substituted nitroolefins are challenging substrates due to reduced reaction rates. The results of our quantum chemical calculations indicate that the catalytic cycle is hampered by a cyclic intermediate (see Figure 1) (Sahoo G. et al., 2012). This obstacle can be overcome by using an acidic co-catalyst, which protonates the intermediate and opens a pathway towards the Michael product. The identity of the predicted intermediate was confirmed experimentally as well via NMR measurements.

Figure 1: The "pause & play" mechanism as revealed in the present work

The preparative value of this simple protocol has been explored. We found that p-nitrophenol is an optimal co-catalyst and a set of γ-nitroaldehydes were obtained with excellent enantio- and diastereoselectivities (Sahoo G. et al., 2012).

* Department of Chemistry, Nanoscience Center, University of Jyväskylä, Finland

REFERENCES
1. Rahaman H, Madarász Á, Pápai I, Pihko PM: Dual hydrogen-bond/enamine catalysis enables a direct enantioselective three-component domino reaction
 ANGEWANDTE CHEMISTRY INTERNATIONAL EDITION 50: 6123-6127 (2011)
 ANGEWANDTE CHEMISTRY INTERNATIONAL EDITION 51: 8495-8499 (2012)
 ANGEWANDTE CHEMISTRY INTERNATIONAL EDITION (accepted, 2012)
 (DOI: 10.1002/anie.201204833)

*Institute of Neurology, Medical University of Vienna, Vienna, Austria

With the aging of society neurodegenerative diseases are becoming more widespread causing serious socio-economic problems. The development of these diseases is a multistep process, where a disordered or misfolded protein species of altered conformation initiate aberrant interactions resulting in the formation of inclusions and the destruction of neurons in the brain. The detailed pathomechanism of these diseases is still not well understood. Besides the previously identified alpha-synuclein and beta-amyloid/hyperphosphorylated tau characteristic for Parkinson’s disease/synucleinopathies and Alzheimer’s disease/tauopathies, respectively, the identification of new disordered proteins playing role in the pathological processes is of vital importance.

At the turn of the millennium the Cell Architecture Research group identified a brain specific protein termed *Tubulin Polymerization Promoting Protein* (TPPP/p25) on the basis of its function (Hlavanda E. et al., 2002). Two interesting characteristics of TPPP/p25, namely being disordered and its accumulation in Lewy bodies in Parkinson’s disease (Kovacs G.G. et al., 2004), motivated us to establish its physiological and pathological features. In normal brain TPPP/p25 is expressed in oligodendrocytes, crucial for the differentiation of progenitor cells (Lehotzky A. et al., 2010), which are the major constituents of myelin sheath encompassing axons. Myelin sheath damage results in multiple sclerosis, in which enhanced level of TPPP/p25 was detected in the liquor as a biomarker (Vincze O. et al., 2011). The accumulation of TPPP/p25, and its co-localization with alpha-synuclein was detected, a typical pathological feature for synucleinopathies. Recently we have reported the expression of TPPP/p25 also in inclusions in Alzheimer’s disease indicating its involvement in mixed type neurodegeneration. The molecular basis of the pathological protein-protein interactions, the alternative association of TPPP/p25 with alpha-synuclein or beta-amyloid has been characterized (Oláh J. et al., 2011), and a cellular model to investigate inclusion formation by TPPP/p25 overexpression has been established (Lehotzky A. et al., 2004), which is of outstanding innovative importance.
REFERENCES

Az általunk alkalmazott gyors képalkotás és a rövid stimulálási protokoll egy teljesen új módszer az in vitro IOS-jel háttérében lévő folyamatok feltérképezésére. Új módszerünkkel megállapított főbb komponensek azt sugallják, hogy az IOS a glutamáterg aktivitást és arra adott gliaлизál választ tűrőzi a hippocampuszban. Az általunk kidolgozott új modell segítségével jobban megérthetjük az in vivo IOS mechanizmusát, ami elősegítheti az erre alapuló diagnosztikai eljárások fejlesztését (Pál I. et al., benyújtva, 2012).

IRODALOMJEGYZÉK
The intrinsic optical signal (IOS) is widely used for mapping afferent activated brain areas. In vivo IOS is mainly ascribed to blood volume changes subsequent to glial glutamate uptake. In contrast, IOS evoked by intensive afferent stimulation in vitro is generally attributed to glial cell swelling via Na⁺/K⁺/Cl⁻ cotransporter that follows postsynaptic activation. In order to understand the differences between the in vivo and in vitro IOS our goal was to explore molecular mechanisms underlying IOS genesis.

We characterized IOS to Schaffer collateral stimulation in the rat hippocampal slice with simultaneous imaging and field potential recordings. We used a 464-element photodiode-array device (PDA) that enables IOS detection with 0.6 ms time resolution, making it achievable to align optical and electrophysiological signals. IOS was primarily observed in the stratum pyramidale and proximal region of the stratum radiatum of the hippocampus. IOS was decreased by blockade of neuronal activity by voltage-gated Na⁺ channel inhibitor tetrodotoxin and was significantly enhanced by suppressing inhibitory signaling with A type γ-aminobutyric acid receptor antagonist picrotoxin. We found that IOS was predominantly initiated by postsynaptic glutamate receptor activation and progressed by the activation of astroglial glutamate transporters and Mg²⁺-independent astroglial N-methyl-D-aspartate receptors. We demonstrated that neuronal K⁺/Cl⁻ cotransporter KCC2 do, but in contrast to previous data from other groups, glial Na⁺/K⁺/Cl⁻ cotransporter NKCC1 do not contribute to the IOS generation. Slight enhancement and inhibition of IOS through non-specific Cl⁻ and volume-regulated anion channels (Pál I. et al., 2012), respectively, were also depicted

High-frequency IOS imaging, evoked by brief afferent stimulation in brain slices provide a new paradigm for studying mechanisms underlying IOS genesis. Major players disclosed this way imply that spatiotemporal IOS reflects glutamatergic neuronal activation and astroglial response, as observed within the hippocampus. Our model may help to better interpret in vivo IOS and support diagnosis in the future (Pál I. et al., submitted, 2012).

REFERENCES
1. Pál I, Nyitrai G, Kardos J: Volume sensitive anion channels does not contribute to the neural activity-dependent intrinsic optical signal (IOS)
 IBRO International Workshop 2012, Szeged, Hungary, poster
2. Pál I, Héja L, Kardos J, Nyitrai G: Neuronal and astroglial correlates underlying spatiotemporal Intrinsc Optical Signal in rat hippocampal slice
 PLOS ONE (submitted, 2012)
A neuronális aktivitás szabályozásában egyre több bizonyíték látsz napvilágot a gliasejtek esszenciális szerepéről. Az asztrotciták több olyan membránfehérje foglal helyet, melyek a fő gátoló neurotranszmitter γ-amino vajasav (GABA), illetve a glutaminsav (Glu), a fő serkentő ingerületátvivő anyag koncentrációjának megrendezésében vesz részt. Csoportunk korábban kimutatta, hogy a gliasejtek Glu/Na⁺ szimportereinek aktivációja a szintén Na⁺ szimport mechanizmussal működő gliális GABA transzporter GAT-2 és GAT-3 altípusok működési irányának megfordulását okozza. Ennek hatására megnő az extraszinaptikus GABA koncentrációja (Héja et al., 2009). Jelen munkában a GAT-2/3 transzporterek által mediált [GABA] növekmény fiziológiás hatásait vizsgáltuk patkány hippocampális agyaszeleteken fokozott neuronális aktivitás állapotában és az epilepszia low-[Mg2⁺]-os modelljében.

Fokozott neuronális aktivitás során gátoltuk a GAT-2/3 transzportereket specifikus inhibítorokkal, a SNAP-5114-gyel, melynek hatására csökkent a tónusos gátolási szintje, igazolva, hogy a gliasejtekből származó GABA hozzájárul az idegsejtek aktivitásának szabályozásához. Az asztrotciták azonban nem expresszálják a klasszikus GABA szintézis útvonalat katalizáló enzimet, a glutamát dekarboxilázt, így tisztázatlan volt a felszabaduló GABA forrása. Megmutattuk, hogy a putrescín-GABA alternatív szintetikus útvonalat katalizáló enzim blokkolása megszüntette a GAT-2/3 transzporterek által mediált tónusos áram komponenst, a felszabaduló GABA tehát a poliamin útvonalból származik. Igazoltuk továbbá, hogy low-[Mg2⁺] epilepszia modellben a GAT-2/3 transzporterek gátalása növeli a rohamszerű események (seizure-like events, SLE) hosszát. In vivo körülmények között pedig kimutattuk, hogy a fiziológiai aktivitás mellett felszabaduló GABA is szignifikánsan befolyásolja a gamma tartománybeli idegi oszcilláció teljesítményét (Héja et al., 2012). Az asztrotciták aktivitásának nyomonkövetése az asztrogilális Ca²⁺ és Na⁺ dinamika fluoreszcens detekálásával ugyancsak fokozott asztrotcita aktivációt mutatott az SLE-k során.

A fenti eredmények egy olyan új, neuroprotektív molekuláris mechanizmus meglétét demonstrálják, amely lehetőséget teremt a szolgalati új gyógyszer kifejlesztésében.

Jelen munka a TECH-09-AI-2009-0117 NKFP NANOSEN9 támogatásával készült.

IRODALOMJEGYZÉK
REGULATION OF NEURONAL HYPERACTIVATION BY INHIBITION FROM GLIAL CELLS

Orsolya Kékesi, Gabriella Nyitrai, Pál Szabó, Richárd Fiáth, István Ulbert, Julianna Kardos, László Héja

Increasing evidence suggest essential role of glial cells in regulating neuronal network activity. Glial cells possess the complete set of membrane proteins to detect and regulate the concentration of GABA and glutamate (Glu), the major inhibitory and excitatory neurotransmitters of the brain, respectively. We have previously shown that uptake of Glu by glial Glu/Na⁺ symporters induces the reverse mode of the glial GABA transporter subtypes GAT-2 and GAT-3, that are also operated by Na⁺ symport. This mechanism therefore increases [GABA] in the extrasynaptic space (Héja et al., 2009). In the current work we determined the physiological role of the GAT-2/3 mediated [GABA] increase in rat brain hippocampal slices during enhanced network activity and in the low-[Mg²⁺] model of epilepsy.

Application of the GAT-2/3 transporter inhibitor SNAP-5114 led to decreased tonic inhibition during enhanced neuronal activity indicating that GABA release through GAT-2/3 significantly contributes to the regulation of neuronal activity by emerging a negative feedback control in overexcited conditions. However, since the classical GABA synthetizing pathway does not exist in astrocytes, the source of the releasing GABA pool remained undecided. We showed that inhibiting the enzymatic conversion of putrescine to GABA eliminated the GAT-2/3-mediated tonic component, demonstrating that the released glial GABA originates from the polyamine pathway. Moreover, blockade of the glial GABA release through GAT-2/3 increased the duration of seizure-like events (SLE) in the low-[Mg²⁺] model of epilepsy. Under in vivo conditions the released GABA was demonstrated to modulate the power of gamma range oscillation during physiological activity as well (Héja et al., 2012). Monitoring the activity of astrocytes by fluorescence detection of glial Ca²⁺ and Na⁺ dynamics also showed enhanced astrocytic activation during SLEs.

The results demonstrate the existence of a novel molecular mechanism by which astrocytes transform glutamatergic excitation into GABAergic inhibition providing an adjustable, in situ negative feedback on the excitability of neurons both in vitro and in vivo providing potential new targets for drug development.

This work was supported by TECH-09-AI-2009-0117 NKFP NANOSEN9.

REFERENCES

SZINKRON POPULÁCIÓS AKTIVITÁS MINTÁZATOK EPILEPSZIÁS ÉS TUMOROS BETEGEK AGYKÉRGİ SZÖVETÉBEN, IN VITRO

Wittner Lucia, Tóth Kinga, Kandracs Ágnes, Szabó Csilla, Bagó Attila*, Eröss Loránd*, Entz László*, Freund Tamás**, Ulbert István

Az epilepszia az egyik leggyakoribbb neurológiai megbetegedés, amelyet az idegi hálózatok túlzott aktivitásával hoznak összefüggésbe. Az epilepsziás agykéreg interiktális aktivitást és rohamokat generál, amely a normál agyban nem figyelhető meg. A gyógyszeres terápia általában hatékony, de így is jelentős számú beteg mutat farmakorezisztenciát.

A terápiarezisztens betegek agyából műtétileg eltávolított szövet jó alkalmat ad arra, hogy az emberi agy azon működését és morfológiáját vizsgáljuk, amely szoros kapcsolatban állhat a neurológiai kórkép kialakulásával. Az epilepsziás emberi agykéregben in vitro körülmények között spontán szinkron populációs aktivitás (SPA) alakul ki, amely nagyfokú hasonlóságot mutat az EEG-n elvezetett interiktális tüskékké.

Epilepsziás és tumoros (de nem epilepsziás) betegek agyából származó neocorticalis szövetből készítettünk szeleteket. A 24 csatornás mikroelektrodával elvezetett lokális mezőpotenciál grádiens mellett egyidejű intracelluláris méréseket is végeztünk.

Az SPA-t egy mezőpotenciál tranziens jellemzete, amelyre rátevődik egy megemelkedett magas frekvenciás aktivitás és sejttüzelés. Az epilepsziás agyából származó szeletek 48%-a mutatott SPA-t, míg a tumoros betegek agyszeleteinek 41%-a. Különböző SPA-mintákat tudtunk kimutatni mindkét betegcsoportban, kb. hasonló arányban. A szeletek kb. 30%-ában egyszerre többféle aktivitást is lehetett regisztrálni. Az epilepsziás esetek 68, a tumoros esetek 56%-ában a SPA a szupragranuláris rétegekben jelentkezett. A sejt klaszter analízis kimutatta, hogy a neuronok 58%-a az epilepsziás szeletekben, és 47%-a a tumoros szeletekben megnövekedett tüzelési aktivitást mutatott. Többféle tüzelési mintázatot különítettünk el, és kimutattuk, hogy mind a serkentő neuronok, mind a gátló idegsejtek hasonlóképp vesznek részt a SPA-kialakításában. Általánosan a szupragranuláris sejtek a szinkron populációs események csúcsa előtt, míg az infragranuláris sejtek a csúcsot követően növelték meg legjobban a tüzelési rátaikat.

Az eredményeink arra utalnak, hogy mind az epilepsziás, mind a tumoros, de nem epilepsziás emberi agykéregből származó seletpreparátumokban kimutatható szinkron populációs aktivitás. A szupragranuláris rétegeknek vezető szerepe van a SPA-kialakításában, amelyben mind a serkentő principális sejtek, mind a gátló interneuronok részt vesznek. A SPA sejt és hálózati tulajdonságai hasonlók voltak az epilepsziás és a tumoros betegekből származó agyszeletekben, ami arra utal, hogy a SPA ugyan hasonlít az EEG-n megjelenő interiktális tüskékhöz, de mégsem köthető egyértelműen epilepsziás folyamatokhoz.

*Országos Idegtudományi Intézet, Budapest
**MTA Kísérleti Orvostudományi Kutatóintézet, Budapest
Epilepsy, one of the most common neurological disorders, is thought to be related to hyperactivity of neuronal circuits. Epileptic cortex generates paroxysmal activity which is never observed in normal brain. Pharmacological treatment is often effective, but significant numbers of patients resist pharmacotherapy. Surgical tissue removal in these patients offers a remarkable possibility to study the anatomy and physiology of living human tissue known to be intimately involved in the generation of this neurological disorder. Similar to interictal spikes recorded on the scalp EEG, spontaneous population activity (SPA) has been shown to be spontaneously generated in epileptic human tissue in vitro.

Tissue slices have been prepared from neocortical tissue derived from patients with epilepsy and from patients with tumour but without epilepsy. Local field potential gradient was recorded with the aid of a 24 channel laminar microelectrode. Neocortical neurons were characterized in simultaneous intracellular records. SPA consists of high frequency oscillations and elevated cell firing which are superimposed on a local field potential transient. SPA could be detected in 48% and 41% of slices derived from epileptic and tumour patients, respectively. Several patterns of SPA could be differentiated both in the neocortex of epileptic and tumour patients, in a similar ratio. About 30% of the slices showed simultaneous multiple SPAs. SPA was generated in the supragranular layers (layer I-III), both in epileptic (68%) and in tumour (56%) tissue. Cell clustering analysis showed that 58% and 47% of the neurons elevated their firing rate in epileptic and tumour slices, respectively. Different cell firing patterns have been separated, and we could show that both excitatory cells and inhibitory interneurons participate in the generation of SPA in a similar manner. In general, supragranular cells showed the maximal firing before, whereas infragranular cells discharged after the local field potential peak of the SPA.

Our results suggest that spontaneous synchronous population activity is generated in both epileptic and non-epileptic neocortical tissue slices. Supragranular layers have a leading role in the initiation of the SPA, in which both excitatory principal cells and inhibitory interneurons participate. The cellular and network properties of SPAs were similar in tissue slices derived from epileptic and tumour patients. This indicates that SPA is comparable to interictal spikes of the EEG records, but cannot be directly related to epileptic processes.

*National Institute of Neurosciences, Budapest, Hungary
**Institute of Experimental Medicine, HAS, Budapest, Hungary
ESEMÉNYHEZ KÖTÖTT AGYI POTENCIÁL EREDMÉNYEK A NYELVI PROZÓDIA ÉS SZINTAXIS INTERAKCIÓJA KAPCSÁN

Honbolygó Ferenc, Török Ágoston, Bánréti Zoltán*, Hunyadi László**, Csépe Valéria

Jelen pszicholingvistikai hátterű elektrofiziológiai kutatásban a prozódia hatását vizsgáltuk a beágyazott szerkezettel rendelkező mondatok feldolgozására. Erre a mondatszerkezetre egy jól definiálható intonációs kontúr jellemző, amely kiválóan alkalmas annak tanulmányozására, hogy hogyan befolyásolja a prozódiai szerkezet megváltozása a mondatok megértését.

A korábbi kutatások (K. Steinhauer et al., 1999) azt találták, hogy a prozódiai szerkezet feldolgozása során egy specifikus eseményhez kötött agyi potenciál (EKP) komponens, a CPS (Closure Positive Shift) jelenik meg.

Eredményeink arra utalnak, hogy a prozódiai szerkezet a szemantikai és szintaktikai szerkezetttől függetlenül épül fel, mivel a CPS-jelentéssel bíró és jelentés nélküli mondatok esetében is megjelent. A beágyazott mondatok elvártól eltérő prozódiai szerkezetét a feldolgozó rendszer figyelembe vette, és ez egy újraelemzési folyamatot vezettek. Ez arra utal, hogy a prozódiai szerkezet elengedhetetlen része a mondat szerkezet felépülésének, és a mondatok szerkezeti jellemzőinek reprezentációja egyaránt alapul a szintaktikai és prozódiai jellemzőkön.

*MTA Nyelvtudományi Intézet
**Debreceni Egyetem

IRODALOMJEGYZÉK
1. Steinhauer K, Alter K, Friederici AD: Brain potentials indicate immediate use of prosodic cues in natural speech processing
 NATURE NEUROSCIENCE 2: 191-196 (1999)
In the present electrophysiological study with a psycholinguistic background, we have investigated the influence of prosody on processing sentences with embedded phrase structure. This particular structure is characterized by a well defined intonation contour, allowing to study how the modification of the expected prosody effects the processing of sentences. Earlier studies (K. Steinhauer, 1999) found that the processing of prosodic structure elicits a specific event-related brain potential (ERP) component, the CPS (Closure Positive Shift).

In an event-related brain potential (ERP) experiment we investigated the processing of meaningful and meaningless embedded sentences with normal and incongruent (unexpected) prosodic structure. As a result, we obtained the CPS component at the boundaries of intonation phrases in both sentences, and it was similar regardless of the congruency of the prosodic and syntactic structure. Moreover, we found evidence that the incongruent prosody was detected, as shown by the appearance of the RAN (Right Anterior Negativity) component, the correlate of prosodic mismatch. Furthermore, the incongruent prosody induced neural syntactic reintegration processes manifesting in the P600 component, in spite of the syntactic structure of sentences being intact, but only in meaningful sentences.

These results suggest that prosodic structure is built up independently of the semantic and syntactic structure, since CPS appeared in both meaningful and meaningless sentences.

The unexpected prosodic structures of embedded sentences were taken into account during the processing of sentences leading to a reanalysis process. This suggest that the prosodic structure is a mandatory constituent of sentence structure building whenever it is present, and the linguistic representation of structural characteristics of sentences is equally based on syntactic and prosodic markers.

*Research Institute for Linguistics, HAS, Budapest, Hungary
**University of Debrecen, Debrecen, Hungary

REFERENCE
1. Steinhauer K, Alter K, Friederici AD: Brain potentials indicate immediate use of prosodic cues in natural speech processing
 NATURE NEUROSCIENCE 2: 191-196 (1999)
Az ún. amnesztikus enyhe kognitív zavar (mild cognitive impairment- aMCI) a központi idegrendszer olyan progresszív mentális hanyatlással járó betegsége, amely fokozott kockázatot jelent az Alzheimer-kór kialakulására. Jelen vizsgálat célja a kognitív deficit progressziójával összefüggésbe hozható agyi területeken belüli, illetve régiók közötti funkcionális kapcsolatok elektrofiziológiai vizsgálata volt. Az aMCI-vel diagnosztizált betegek és idős kontroll személyek EEG adatai két alakommal egymást követően egy év elteltével nyugalmi állapotban kerültek rögzítésre. A lassú hullámú oszcillációra (delta 1 - 4 Hz) jellemző EEG elektróda-párok közötti funkcionális kapcsolatok erőssége (a teljes funkcionális hálózatra) a fázis-szinkronizáció mérése alapján került meghatározásra. Hierarchikus klaszterelemzési eljárással olyan agyi régiók kerültek azonosításra, amelyek különálló funkcionális alhálózatnak illetve modulnak tekinthetőek. A modulokon belül és azok között jellemző funkcionális kapcsolatok erőssége került összehasonlításra a csoportok között. A lassú oszcillációs kapcsolatok gyengülése a funkcionális alhálózatok között megbízhatóan megkülönböztette a klinikai csoportot a kontroll csoporttól. A betegcsoportra jellemző funkcionális alhálózatok közötti kapcsolatok gyengülése a távoli agyi területek közötti kommunikáció csökkenésére utal. A frontális agyi területen belüli kapcsolatok gyengülése egy év elteltével kifejezettebbé vált az MCI betegek esetében. Összegezve az aMCI patológiára jellemző a nyugalmi agyi hálózatok funkcionális kapcsolatainak hanyatlása elsősorban a távoli agyi területek között figyelhető meg, amely az idő előre haladtával frontális régió belüli kapcsolatokra is kiterjed.

1 MTA TTK KPI
2 ELTE PPK Kognitív tanszék
3 SOTE Pszichiatríai és pszichoterápiás klinika
4 ELTE PPK Pszichofiziológiai központ
5 PPKE ITK
LONGITUDINAL STUDY OF RESTING STATE FUNCTIONAL NETWORK CHARACTERISTICS IN MILD COGNITIVE IMPAIRMENT

Brigitta Tóth1,2, Bálint File5, Zsófia Kardos1,2, Roland Boha1, Zoltán Hidasi3, Zsófia Anna Gaál1, Márk Molnár1,4

The term ”mild cognitive impairment” (MCI) conventionally applies to a condition when the decline of cognitive abilities is more apparent than that seen in normal aging, and it is regarded as a transitional state from which Alzheimer disease is more likely to develop. Resting state EEGs were compared between patients with the diagnosis of amnestic subtype of mild cognitive impairment (aMCI) and healthy elderly controls at two times over a one year period. The study aimed at investigating the role of functional connectivity between and within different brain regions with respect to the possible progression of cognitive deficit of MCI status. EEG data of controls and aMCI patients were recorded in two sessions during eyes closed and eyes opened resting conditions. Functional brain connectivity was investigated based on the measurement of phase synchronization (phase lag index) in delta frequency bands. Within the functional brain network sub networks (modules) were identified by hierarchical clustering algorithm. Level of within and between modular connectivity was compared between groups and conditions. In the delta band between-modular connectivity of prefrontal and central regions was substantially lower in the MCI group, supporting the hypothesis of a functional disconnection of neurocognitive networks in patients with MCI. Additionally the decline of within-modular connectivity in the patient group was observed over the prefrontal and bilateral fronto-temporal areas. In summary the results of the present study suggest that in MCI the target of pathology is both local and large scale neuronal connectivity which supports the hypothesis of a functional disconnection of resting state networks in this condition. The disconnection between frontal and distant brain areas is a characteristic feature of aMCI, and may prove to be predictive in terms of the progression of this condition.

1Institute of Cognitive Neuroscience and Psychology Research Centre for Natural Sciences Hungarian Academy of Sciences
2Department of Cognitive Science, Eötvös Loránd University
3Clinic of Psychiatry and Psychotherapy, Faculty of Health Sciences, Semmelweis University
4Center of Psychophysiology, Department of Pedagogy and Psychology, Eötvös Loránd University
5Faculty of Information technology, Pázmány Péter Catholic University
CSELEKVÉS-HANG EGYBEESÉKEK HALLÁSI ÉSZLELÉSE:
FIGYELEM VAGY FORWARD MODELLEZÉS?
Horváth János

A saját magunk által keltett hangok feldolgozása – az eseményhez kötött agyi potenciálok (EKP-k) vizsgálata alapján – kisebb szenzoros idegrendszeri aktivitással jár, mint mikor ugyanezen hangokat egy másik ágens kelti. Az aktivitás csökkenése az uralkodó elképzelés szerint a cselekvés és a hang asszociációja révén megvalósuló idegrendszeri forward modellezésnek köszönhető, ami lehetővé teszi, hogy a szenzoros rendszer a cselekvés előrelátható következményeihez az inger megjelenésével egyidejűleg alkalmazkodjék. Pár tanulmány azt demonstrálta, hogy a feldolgozási aktivitás olyan helyzetekben is hasonlóképpen csökken, amelyekben a cselekvés és a hang egybeesése véletlenszerű (Hazemann P. et al., 1975, Horváth J. et al., 2012), ami a forward modellezési hipotézissel nehezen összeegyeztethető.

A jelen kísérlet azt a hipotézist vizsgálta, mely szerint a véletlen egybeesésekhez társuló csökkent szenzoros feldolgozási aktivitás egy általános készenléttet tükröző a cselekvéssel egyidejűleg jelentkező tetszőleges inger feldolgozására. Alternativ hipotézisként a feldolgozási aktivitás csökkenésére a cselekvés különböző modalitásai (hallási és taktilis) szenzoros következményei közötti figyelemmegosztás adhat magyarázatot. A kísérlet résztvevői egyenletes időközönként mutatóújjukkal egy infravörös fénynyalábot szakítottak meg, miközben véletlenszerű időközönként hangokat mutattunk be. Az egyik feltételben az résztvevők ujja a fénynyaláb megszakítása után egy talapzatra csapódott, a másik feltételben a talapzat eltávolítása került, így mechanikai kapcsolat a cselekvés során nem jött létre. Az ujjmozgás csak abban az esetben csökkentette a mozgással véletlenül egybeeső hangra adott EKP-k amplitúdóját, ha a mozgás mechanikai kapcsolattal is járt. Ez arra utal, hogy a cselekvéssel egyidejű hangok feldolgozási aktivitásának csökkenése a hallási és taktilis modalitások közötti figyelemmegosztás következménye. Mivel a cselekvés-hang egyidejűség azokban a kísérleti elrendezésekben is megvalósul, amelyekben a saját magunk által keltett hangok feldolgozását vizsgálják, a jelen eredmény azt mutatja, hogy ezen jelenségek a forward modellezésnél egyszerűbben, a figyelem megosztásával is magyarázhatók.

IRODALOMJEGYZÉK
AUDITORY PERCEPTION OF ACTION-SOUND COINCIDENCES: ATTENTION OR FORWARD MODELING?
János Horváth

The analysis of event-related brain potentials (ERPs) shows that the processing of self-induced tones requires less sensory neural activity than the processing of the same tones when these are induced by other agents. According to the dominant view, the decreased activity is due to neural forward modeling capturing action-sound associations, which makes the simultaneous adaptation of the sensory system to the predictable sensory consequences of the action possible. A couple of studies demonstrated that the processing activity decreases similarly when actions and sounds merely randomly coincide (Hazemann P. et al., 1975, Horváth J. et al., 2012), which is difficult to explain in terms of forward modeling.

The present experiment investigated the hypothesis that the decreased sensory processing activity for action-sound coincidences reflects a general preparation for the processing of any stimulus events occurring simultaneously with the action. As an alternative, the decreased activity could be explained by the division of attention between the sensory (auditory and tactile) modalities of the action consequences.

During the experiment, tones were presented at random intervals while participants broke an infrared beam of light with their index finger from time to time at a regular pace.

In one condition, after crossing the light beam, the index finger touched a platform positioned just below the light beam. In the other condition, the platform was removed, so no mechanical contact was made upon movement. The finger-movement decreased the amplitude of the ERPs to the tones only when the movement involved a mechanical contact as well.

This suggests that the decrease in auditory processing activity results from the division of attentional resources between the auditory and tactile modalities.

Because paradigms in which the processing of self-induced sounds is investigated also use temporally contiguous action-sound arrangement, the present results suggest that these phenomena can be explained simply by the division of attention, without reference to forward modeling.

This work was supported by the European Community’s Seventh Framework Programme (PERG04-GA-2008-239393), and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. I thank Annamária Burgyán for assistance in data collection.

REFERENCES
TÁRSAS KOMPETENCIA ÉS SZOCIÁLIS KOGNÍCIÓ KUTYA MÓDRA: VADÁLLAT VAGY FARKASBŐRBE BÚJT CSECSEMŐ?

Topál József

A kutatók körében egyre inkább elfogadott az a vélekedés, miszerint a kutyák háziasítását kísérő evolúciós folyamat nagymértékben átalakította e faj viselkedését, s ennek eredményeképpen a kutyá egyfajta „mesterséges” állattá alakult. E viselkedés-evolúciós folyamat sajátossága, hogy az emberi társas viszonyokhoz való alkalmazkodás kényszere egy „funkcionálisan humán-analóg” szociokognitív képességekkel felruházott állatot hozott létre (Miklósi Á. és Topál J., 2012). Domesztikálatlan változatához, a farkashoz képest a kutyá társas készségeinek egyik fő jellemzője, hogy szívesen csatlakozik az emberi csoportokhoz, és kifejezett készséget mutat arra, hogy oda beilleszkedve a társas elvárásoknak megfelelően viselkedjen. Többek között ez az, ami miatt a kutyára hajlamosak vagyunk „gyerekként” tekinteni (Topál J. és Gácsi M., 2012).

Egyre több tudományos bizonyíték szól amellett, hogy a nyilvánvaló törzsfejlődési távolság ellenére a kutyák és a gyerekek viselkedési tesztekben gyakran mutatnak hasonló teljesítményt (pl. Topál J. et al., 2009; Téglás E. et al., 2012) és számos olyan társas-kommunikációs képességgel bírnak, melyek csecsemőszerű módon nyilvánulnak meg az emberrel való interakciók során. Az emberi csecsemő társas-értelmi működésének azon lenyeges komponensei – melyek viselkedési szinten főként a kommunikációs ingerekre való érzékenységben nyilvánulnak meg – gyakran a kutyában is tetten érhetők. Úgy tűnik, hogy az emberrel való kommunikációra vonatkozó „előkészítettség” az, ami a kutyát – és a csecsemőt – az információ befogadására oly készséges alannyá teszi a legkülönbözőbb társas helyzetekben.

A kutyaszociokognitív készségeire utaló, és sok vitát kiváltó újabb tudományos eredmények persze arra ösztönözik a viselkedéskutatókat, hogy a lehetséges mechanizmusokat illetően különböző, komplex vagy kevésbé komplex kognitív működést feltételező hipotézisekkel álljanak elő. Előadásomban egy elméleti keretet felvázolva és a kutyá társas készségeibe betekintés adó kísérleti eredményeket bemutatva érvelek a kutyaelme „csecsemőszerű” működése mellett.

A szerző kutatásait az OTKA támogatja (K100695).

IRODALOMJEGYZÉK
SOCIAL COMPETENCE AND SOCIAL COGNITION IN A DOG-LIKE MANNER:
WILD BEAST OR BABY IN WOLF’S CLOTHING?
József Topál

There is increasing scientific agreement that dog domestication has led to the emergence of an ’artificial’ animal, and this evolutionary process has greatly impacted the behaviour of the ‘man’s best friend’. Many assume that the evolutionary adaptation to the human social environment created an animal possessing functionally human-analogue sociocognitive skills, (Miklósi Á. & Topál J., 2012). The most striking feature of the social capacities of dogs (as compared to its non-domesticated relative, the wolf) is that they seem to prefer joining human groups and acting in line with social expectations and this makes this animal – on an intuitive level – so childlike for us (Topál J. & Gácsi M., 2012).

There is now ample evidence that, in spite of their phylogenetic distance, dogs and human children often show comparable performance at the behavioural level (e.g. Topál J. et al., 2009; Téglás E. et al., 2012). Dogs undeniably possess a wide variety of social-communication skills and these skills often manifest in an infant-analogue, sophisticated manner in inter-specific interactions (towards people). The crucial components of the human infant social cognition, which can manifest itself as receptivity to social communicative signals, can be found in dogs and such a disposition prepares dogs (as well as young infants) to efficiently learn from humans in a wide range of situations.

Recent results on the human-like performance in dogs prompt the scientific community to come up with various hypotheses on the potential underlying mechanisms and strongly facilitate the development of both simple and complex versions of cognitive accounts. In my talk I will present a theoretical framework which may explain as well as comparative findings which can give further insights into the infant-like nature of dogs’ social cognition.

The author receives support from Hungarian Science Foundation (OTKA K100695).

REFERENCES
 SCIENCE 325: 1269-1272 (2009)
4. Téglás E, Gergely A, Kupán K, Miklósi Á, Topál J: Dog’s gaze following is tuned to human communicative signals
A NEMZETI IDENTITÁS ÉRZELMI SZERVEZŐDÉSE

Fülöp Éva

A tudományos narratív pszichológia szerint a csoport történelmi narratívumainak elemzése lehetővé teszi a csoportidentitás jellegzetességeinek objektív feltárását (László J. és Ehmnn B., 2012).

Jelen vizsgálat sorozatban (Fülöp É. et al., 2012) a történelmi szövegek érzelmi aspektusának vizsgálatával a nemzeti identitás érzelemi szerveződését kívántuk megismerni. Feltételeztük, hogy a csoport történelmi pályájához (László J., 2005) a csoportra jellemző érzelmi mintázatok tartoznak. Ennek a feltévések az operacionalizálására a NarrCat tartalomlemező programjának érzelem modulja segítségével a kollektív emlékezetben áthagyományozott történelmi reprezentációkat elemeztük történelem középpontjaiban, laikus elbeszélésében, történelmi regények és sajtóanyagok elemzésével, valamint kisérleti körülmények között. A történelmi szövegekben előforduló érzelmek egy jellegzetes magyarokhoz tartozó érzelem-együttel meglétét mutatják, melyeket történelmi pálya érzelmeknek neveztünk el. Ezek egy olyan érzelmi dinamikára utalnak, melyben az identitás érzelmi oldala a bizalmatlanság, az elkeseredettség és a beteljesületlen remények köre szerveződik és melyben az áldozattá válás az identitás legmagabátlóbb élménye. A kollektív áldozat szerepben (Bar-Tal D. et al., 2009) való megkedvetést igazolják további eredményeinek, melyek szerint a magyarok áldozat és elkövető szerepben is inkább áldozat pozícióra jellemző érzelmeket mutatnak.

Legutóbbi kutatásunkban a trauma-feldolgozás folyamataira fókuszáltunk. Kidolgoztunk egy narratív modellt, mely azonosítja a szövegben a trauma elaboráció szintjeinek nyelvi jegyeit. A trianoni traumával foglalkozó újságcikkek elemzése azt mutatja, hogy 90 évvel a szerződés aláírása után is ugyanolyan intenzív érzelmek kísérik az eseményt, mint annak megválasztásakor, mely egyértelműen az érzelmi feldolgozatlanság jelének tekinthető.

IRODALOMJEGYZÉK

1. László J, Ehmnn B: Narrative social psychology
 http://www.sydneyssymposium.unsw.edu.au/2012/chapters/chapters.htm
2. Fülöp É, László J, Csertő I, Ilg B, Szabó Zs, Slugoski B: Emotional elaboration of collective traumas in
 historical narratives
 http://www.sydneyssymposium.unsw.edu.au/2012/chapters/chapters.htm
3. László J: A történetek tudománya, Budapest, Új Mandátum Kiadó, 2005
 intractable conflicts
 INTERNATIONAL RED CROSS REVIEW 91: 229-277 (2009)
EMOTIONAL ORGANIZATION OF THE NATIONAL IDENTITY
Éva Fülöp

Scientific narrative psychology claims that analysis of historical narratives of the group makes possible objective exploration of characteristics of group’s identity (László J. and Ehmann B., 2012).

In present serious of studies (Fülöp É. et al., 2012) emotional organization of national identity is intended to discover by investigating emotional aspects of historical narratives. It was assumed that historical trajectories (László J., 2005) of groups include typical emotional patterns as well. To operationalize this prediction, historical representations of the collective memory were analysed with emotion algorithm of the NarrCat program in history textbooks, lay narratives, historical novels and press materials, and in addition in experimental settings. Emotions in historical narratives show a characteristic pattern of emotion attributions of Hungarians, which were labelled as historical trajectory emotions. These emotions imply an emotional dynamics in which affective side of the identity is organized around mistrust, bitterness and unfulfilled aspirations and in which being victim is the most significant experience of the identity. Collective victimhood (Bar-Tal D., 2009) of Hungarians is verified by further empirical findings which show occurrence of victim emotions also in perpetrator positions.

Our latest study is focused around processes of trauma elaboration. A narrative model was developed which identifies narrative markers of different levels of trauma elaboration. Analysis of newspaper articles about trauma of Trianon indicates that after 90 years of the signing of the Treaty same intensity of emotions appears related to the event. This can be interpreted as univocal indicator of low level trauma elaboration.

REFERENCES
1. László J, Ehmann B: Narrative social psychology
 http://www.sydneyssymposium.unsw.edu.au/2012/chapters/chapters.htm
2. Fülöp É, László J, Csertő I, Ilg B, Szabó Zs, Slugaski B: Emotional elaboration of collective traumas in historical narratives
 http://www.sydneyssymposium.unsw.edu.au/2012/chapters/chapters.htm
3. László J: A történetek tudománya, Budapest, Új Mandátum Kiadó, 2005
 INTERNATIONAL RED CROSS REVIEW 91: 229-277 (2009)
Ebben az előadásban egy új nanotechnológiai eljárást mutatunk be, amely segítségével a grafén elektromos tulajdonságait kontrollált módon hangolhatjuk, az atomi szerkezetének a síkra merőleges periodikus deformációival. Amikor termikusan indukált összenyomó feszültségnek teszünk ki grafén nanomebránokat, a mechanikai feszültséget a síkra merőleges periodikus deformáció segítségével relaxálják, amely hullámhossza akár a nanométeres tartományba is eshet. Az atomi felbontású pásztázó alagútmikroszkópiás mérések segítségével tanulmányoztuk az ilyen mechanikai feszültségnek kitett grafén membránok, szerkezeti és elektromos tulajdonságait. Ezzel a módszerrel sikerült a grafén szerkezetét nanométer alatti pontossággal modulálni, ami lehetőséget biztosított, hogy először tanulmányozzuk egy rugalmas membrán nanoskálájú deformációt, ahol a deformáció hullámhossza összemérhető a rácsállandóval. Tárgyalni fogjuk, hogy a grafén mechanikai viselkedése miként tér el a nanoskálán, a makroszkopikusan megszokott kontinuum mechanikától, illetve alagút-spektroszkópiai mérések segítségével vizsgáljuk a nanoméretű szerkezeti hullámok hatását a grafén elektronszerkezetére (1. ábra) (Tapasztó L. et al., 2012).

1. ábra Nanoméretű szerkezeti hullámok hatása a grafén elektronszerkezetére

* University of Minnesota, Minnesota, USA
** Korea Research Institute of Standards and Science, Daejon, Korea

IRODALOMJEGYZÉK
NATURE PHYSICS 8: 739-742 (2012)
In this talk we will present a novel nanoengineering method of graphene for tuning the electronic properties through the periodic modulation of the atomic structure. When subjected to thermally-induced compressive strain graphene membranes display a highly periodic out-of-plane modulation of their atomic structure down to nanometer wavelengths. We have employed atomic resolution STM investigations of suspended graphene nanomembranes to reveal the structure and properties of such rippled graphene membranes. Strain engineering nanometer wavelength ripples allowed us for the first time to explore the nanomechanical properties of a membrane with deformation wavelengths comparable to its lattice constant. We will discuss how the mechanical behavior of graphene deviates at the nanoscale from the macroscopically established concepts of continuum mechanics. Based on spatially resolved tunneling spectroscopy measurements we will also discuss the influence of the nanoscale periodic ripples on the electronic structure of graphene (Fig. 1) (Tapasztó L. et al., 2012).

* University of Minnesota, Minnesota, USA
** Korea Research Institute of Standards and Science, Daejon, Korea

REFERENCE
 NATURE PHYSICS 8: 739-742 (2012)
NANOSZÁL ALAPÚ ELEKTROMECHNAIKAI RENDSZEREK

Volk János, Erdélyi Róbert, Szabó Zoltán, Illés Levente, Lászlóffy András, Sáfrán György

A különböző kantilever és nanoszál alapú elektromechanikai rezonátorokkal rendkívül érzékeny - akár egyetlen fehérje kimutatására is alkalmas – tömegmérés válík lehetővé (Hanay M.S. et al., 2012). A rezgőnyelven megkötött objektum a rezonanciafrekvencia csökkenését eredményezi, mely optikai vagy elektromos úton pontosan kiolvasható. Bár a szakirodalomban számos alternatív megoldás létezik, az IC technológiával kialakított (Si, Si₃N₄, SiO₂) rezgőnyelvekkel és nanoszálakkal (Si, GaN, InAs stb.) megvalósított rezonátorok egyaránt szinte kizárólag horizontális elrendezésűk.

A kutatócsoport célja, hogy olyan új típusú statikus és dinamikus mechanikai érzékelőket valósítsan meg, melyben az erőt érzékelő vagy rezonanciába hozott átalakító egy vertikális félvezető nanoszál. Bár az eszköz megvalósítása bonyolultabb módszert igényel, a vertikális nanoszál alapú eszköz bizonyos alkalmazások számára - pl. sejt tapadás vizsgálat esetén, ahol a laterális erők vizsgálat a cél - előnyösebb lehet.

A csoport számos alternatív módszert dolgozott ki vertikálisan szabályosan rendezett ZnO nanoszálak növesztésére (Erdélyi R. et al., 2011; Volk J. et al., 2012). Az egyedi ZnO és InAs félvezető nanszálak mechanikai tulajdonságait in-situ statikus és dinamikus módszerrel vizsgálták egy páztázó elektronmikroszkóp munkakamrájában (Erdélyi R. et al., 2012). A véges elem szimulációkkal támogatott számolások kimutatták, hogy a nanoszálak hajlítsási modulusa (E₉M) az egyes nanoszálakon nagy szórást mutat, és az átlagos érték lényegesen alacsonyabb az adott anyagra ismert tömbi mennyiségénél. Ezek lehetséges eredetét transzmissziós elektronmikroszkóppal kutatták. Emellett az előadáson szó lesz egy új elven működő transzisztorról is, melyben a félvezető vekonyréteg csatorna vezetése egy vertikális nanoszállal mechanikai úton lenne vezérelhető.

IRODALOMJEGYZÉK

 NATURE NANOTECHNOLOGY 7: 602-608 (2012)

 CRYSTAL GROWTH AND DESIGN 11: 2515-2519 (2011)

3. Volk J., Szabó Z., Erdélyi R., Khánh N.Q.: Engineered ZnO nanowire arrays using different nanopatterning techniques

 SOLID STATE COMMUNICATIONS 152: 1829-1833 (2012)
Highly sensitive mass sensors can be obtained by means of cantilever and nanowire based electromechanical sensors, enabling even single protein detection (Hanay M.S. et al., 2012). The immobilization of the object to be detected onto the resonator can result in a downshift in resonance frequency which can be detected in optical or electrical way. Although several alternative methods are known in the literature for the device fabrication, in each device configurations the cantilevers (Si, Si₃N₄, SiO₂) or nanowires (Si, GaN, InAs etc.) are horizontal.

On the other hand, the aim of the research group is to realize static and dynamic mechanical sensors where the transducer is a vertical nanowire. Although such devices require more sophisticated process, they are more suitable for some niche applications such as lateral force detection of cell adhesion.

The research group has developed several alternative scheme for the growth of highly ordered ZnO nanowires (Erdélyi R. et al., 2011; Volk J. et al., 2012). The mechanical properties of single nanowires were measured using novel in-situ static and dynamic characterization techniques carried out in a scanning electron microscope (Erdélyi R. et al., 2012). As it was pointed out from the experiment, which was supported by finite element analysis, the bending modulii (E_{BM}) of the nanowires scatter strongly and there averaged value is significantly lower than that of the bulk materials. To reveal the crystallographical and morphological origin of the discrepancy in E_{BM}, the mechanically tested nanowires were subsequently investigated by transmission electron microscopy. Beside, the lecture will also address a novel transistor where the conductivity of the semiconductor thin film channel is gated mechanically by means of a vertical nanowire.

REFERENCES

 NATURE NANOTECHNOLOGY 7: 602-608 (2012)
2. Erdélyi R, Nagata T, Rogers DJ, Teherani FH, Horvath ZE, Labadi Z, Baji Z, Wakayama Y, Volk J: Investigations into the impact of the template layer on ZnO nanowire arrays made using low temperature wet chemical growth
 CRYSTAL GROWTH AND DESIGN 11: 2515-2519 (2011)
3. Volk J, Szabó Z, Erdélyi R, Khánh NQ: Engineered ZnO nanowire arrays using different nanopatterning techniques
4. Erdélyi R, Madsen HM, Sáfrán Gy, Hajnal Z, Lukacs IE, Fülöp G, Csonka Sz, Nygard J, Volk J: In-situ mechanical characterization of wurtzite InAs nanowires
 SOLID STATE COMMUNICATIONS 152: 1829-1833 (2012)
BIOKOMPATIBILIS C-TI NANOKOMPOZIT VÉKONYRÉTEGEK FEJLESZTÉSE

Balázsi Katalin, Vandrovcová Marta*, Bacáková Lucie*, Gubicza Jenő**, Lukács István Endre, Balázsi Csaba

Köszönetnyilvánítás: Bolyai János Ösztöndíj, OTKA PD101453, 81360, 76181, 105355.

*Cseh Tudományos Akadémia Fiziológiai Intézet, Bioanyagok és Szövettani Osztály
**ELTE Anyagfizika Tanszék

IRODALOMJEGYZÉK

DEVELOPMENT OF BIOCOMPATIBLE C-TI NANOCOMPOSITE THIN FILMS

Katalin Balážsi, Marta Vandrovcová*, Lucie Bacáková*, Jenő Gubicza**, István Endre Lukács, Csaba Balážsi

The metallic medical implants have been produced favorable from titanium. Titanium and their alloys are preferred for implants for their good properties as corrosion resistance, biocompatibility, durability and strength. However, titanium ions can be detected in the body after the implantation. Several methods can be applied for the increasing of metal insulation, corrosion resistance and biocompatibility. One possible method for the surface passivation may be a using a combination of nano-crystalline and amorphous phases composites materials. In general, the carbon - metal nanocomposites showed better adhesion and mechanical properties than the bulk material. C-Ti films deposited by magnetron sputtering consisted of 4-5 nm stable TiC phase embedded in amorphous carbon matrix. (Balážsi K. et al., 2012). The films exhibited ~ 59 GPa nanohardness and ~ 340 GPa Young modulus.
The MG63 human osteoblast bone cells were used for biocompatibility measurements.
The C-Ti films showed better viability (90%) and biocompatibility than the glass and polystyrene control samples after 7 days seeding. Hydroxyapatite prepared from eggshells was used as coating on C-Ti film surface for fast incorporation. The previous in-vivo and human studies have demonstrated the positive bone replacement effect of nanostructured HAp (Lee S-W. et al., 2012).

Acknowledgements: János Bolyai Scholarship, OTKA PD 101453, 81360, 76181, 105355.

*ASCR, Institute of Physiology, Biomaterials and Tissue Engineering Dep.
** Eötvös Loránd University, Department of Materials Physics

REFERENCES
Az előadásban plazmonikus nanorészecskékkel kapcsolatos kutatási eredményeinkból mutatunk be néhányat. Tárgyaljuk a nemesfém nanorészecskék különleges optikai tulajdonságainak okait, valamint hogy a lokalizált felületi plazmon rezonancia jelenséget hogyan használhatjuk fel kutatási célokra. Bemutatjuk, hogyan lehetséges plazmonikus nanorészecskékből a kolloid kémia és az önszerveződés segítségével hierarchikus szerkezeteket létrehozni.

A vizsgált plazmonikus nanoszerkezetek tipikus mérete a látható fény hullámhosszánál jóval kisebb. Mégis, fényel rendkívül nagy hatásfokkal kölcsönhatnak, köszönhetően a fény hatására fellépő, a vezetési elektronjaik által végzett kollektív oszcillációknak (felületi plazmon rezonancia). Ennek következtében a fém nano-objektumok felületéhez közel rendkívül nagy elektromágneses terek alakulnak ki. A nanostruktúrák egyrésztt nagy hatékonysággal szórják a besugárzó fényt, másfelől tulajdonképpen egy nano-léptékben működő lencséhez hasonlíthatóak, az általa fókuszált fény energiája bioérzékelésben, vagy energiakonverzió során felhasználható.

Három alkalmazási potenciállal is bíró példa kerül bemutatásra: folyadék közegben szuszpendált arany nanorészecske felhasználása érzékeny hang-detektorként, arany nanorudak alkalmazása szerves napelemekben, valamint arany nanoszerkezetek kialakítása bioérzékeléshez.

A munkát az LMUexcellent Research Fellowship, a Bolyai János Kutatási Ösztöndíj és az OTKA (PD-105173) támogatta.
We present some recent results from our research on plasmonic nanoparticles. We highlight the origin of the special optical properties of noble metal nanoparticles, and show how their ability to support localised surface plasmon resonances can be exploited for research purposes. We demonstrate how colloid chemistry in combination with bottom-up self-organization can be used to create hierarchical assemblies of plasmonic nanoparticles.

Our plasmonic nanostructures display feature sizes significantly smaller than the wavelength of visible light. They can, however, strongly interact with light due to the resonant collective oscillation of their conduction electrons (surface plasmon resonance), leading to very high local electromagnetic fields at the vicinity of the surface of the metal. This effect has numerous interesting implications. They scatter light intensively, but they can be regarded as nano-scale focussing lenses. The light concentrated in the near-field of the structures can be exploited for bio-sensing or energy harvesting purposes.

Three specific topics will be highlighted with potentials in different application areas: gold nanoparticles as sensitive liquid suspended sound detectors, gold nanorods as light-absorption modulators for organic solar cells, and gold nanostructures for biosensing.

This work was supported by the LMUexcellent Research Fellowship, the János Bolyai Research Scholarship and the Hungarian Scientific Research Fund OTKA-PD-105173.

Nanoméretű nikkel részecskék organikus közegű redukciós folyamatokban történő előállítási lehetőségeit tanulmányoztuk. Vizsgáltuk különböző jellegű felületaktív anyagoknak (anionos, kationos, illetve nemionos tenzidek) a részecskék szemcseméretére és alakiságára gyakorolt hatását. Meghatároztuk azokat a körülményeket, amellyel gömb (1. ábra), pálcika (2. ábra), illetve egyéb különleges morfológiájú nanorészecskék képződését eredményezik. A különböző morfológiájú részecskék mágneses jellemzőinek összehasonlításából megállapítottuk, hogy a pálcika alakú részecskék esetében mintegy 2/3-os koercitív erő növekmény érhető el. Az eredményekre alapozva további célunk fém nanoporokból kiindulva új, nanoszerkezetű állandó mágnesek készítése és tesztelése.

*MTA Atommagkutató Intézet, Elektronspektroszkópiai és Anyagtudományi Osztály

IRODALOMJEGYZÉK
EFFECT OF SHAPE ANISOTROPY ON THE MAGNETIC PROPERTIES OF NICKEL NANOPARTICLES PREPARED BY CHEMICAL REDUCTION METHODS

Gyula Tolnai, István Sajó, Péter Németh, Eszter Drotár, Sándor Mészáros *

The applicability of chemical synthesis processes for preparation of nanosized magnetic materials (iron, nickel, cobalt and alloys of them) were extensively studied (Green M., 2005). In this class of system, the size and shape of the particles mainly determines electric, optic, magnetic, and catalytic properties (Chen D. & Hsieh C., 2002). Therefore, methodologies that provide routes to obtain nanostructures in a predictable and controllable, and way have become an important issue (Li Y. D. et al., 1999).

New synthesis methods were developed for the manufacturing of isometric (Fig.1), rod-shaped (Fig. 2), and other special shape forms of nickel nanoparticles. Reduction of nickel salts in organic solvents with hydrazine has been investigated systematically to obtain ultrafine nanopowders with high purity and homogeneous size distribution. The results show that the type of applied surfactants and solvents are the key factors to influence the reactions. The magnetic and other physic-chemical properties of these materials were studied. Significant differences in the magnetic anisotropy were found depending on the grain size and shape anisotropy. It was established that coercitivity derived form magnetic hysteresis curve increased by approximately 60% larger compared to that of spherical particles. These scientific results contribute to exploring opportunities in research and application of new nanostructured magnetic composites, which can give rise to new generation permanent magnets.

* Laboratory of Electron Spectroscopy, Institute of Nuclear Research of the Hungarian Academy of Sciences

REFERENCES
GYÓGYSZERADAGOLÓ CSATORNÁVAL ELLÁTOTT MÉLYAGYI ELEKTRÓDÁK

Pongrácz Anita, Fekete Zoltán, Márton Gergely, Bérces Zsófia, Ulbert István, Battistig Gábor

Az idegrendszer működésének megértését célzó kutatások elsődleges eszköze az agy elektromos jeleinek elvezetése, illetve az agyszövet elektromos, vagy kémiai ingerlésére adott reakciók vizsgálata. Ilyen vizsgálatokra hatékonyan elsősorban invazív technikák alkalmazhatóak. Az idegszövetbe ültethető ingerlő és jelelvezető eszközök fejlesztése napjainkban is intenzíven folyik.

A szilícium alapú technológia alkalmas olyan csatornával ellátott mikrométeres mérettartományba eső tűk kialakítására is, melyek segítségével viszonylag kis szövetkárosító hatással, nagy térbeli pontossággal juttathatóak kémiai anyagok az élő szövetbe. Nagy előnyt jelent, ha egyetlen eszközbe integrálhatóak a kémiai adagolásra, és az elektromos mérésre, illetve ingerlésre alkalmas egységek, így egy rendkívül széleskörűen alkalmazható eszköz állhat a kutatók, és később talán a klinikusok rendelkezésére.

Az MTA TTK MFA MEMS laborjában a mikrotechnológia eszköztárával előállított, monolitikusan integrált gyógyszeradagoló csatornával ellátott szilícium alapú mélyagyi elektródok (1. ábra) elektromos és fluidikus karakterizációját és az MTA TTK KIP Összehasonlító Pszichofiziológia Laborjában történt in-vivo tesztelését mutatja be az előadás.

1. ábra a) Szilícium alapú sokcsatornás elektródák b) Mélyagyi elektródában futó két párhuzamos gyógyszeradagoló csatorna elektronmikroszkópos keresztmetszeti képe. A bal felső sarokban a csatornák kifutása látható a Pt vezetékezés alatt (Pongrácz A. et al., 2012)

IRODALOMJEGYZÉK
DEEP BRAIN MULTIELECTRODES WITH INTEGRATED DRUG DELIVERY CHANNELS

Anita Pongrácz, Zoltán Fekete, Gergely Márton, Zsófia Bérces, István Ulbert, Gábor Battistig

Fabrication method, electrical and fluidic characterization and in vivo testing of deep brain silicon multielectrode with monolithically integrated fluidic channel are presented in details. Micromachined silicon probes with monolithically integrated microfluidic channels up to 70 mm length have been realized (Fig.1) to perform simultaneous electrical recording and drug delivery in deep brain regions. The achieved diameters of the microchannels are in the range of 5-30 μm, while the length of the channel can be even 70 mm long.

Fabrication process and integration of the drug delivery channels and the Pt recording sites are described. Electrical characterization and impedance tuning of the developed probes are also demonstrated. The functionality of the microfluidic channels is verified and the hydrodynamic characteristics (flow rate vs. injection pressure) are measured in the case of several length and cross-sections.

Feasibility of our integration concept is proved by locally injected bicuculline in the cortex and in the thalamic regions of rat brain in vivo, while simultaneously recording the electrical signals of the stimulated neurons on four different electrical channels.

Figure 1 a) Micromachined neural multielectrodes in a Si wafer b) Cross-sectional scanning electron microscopy image of a probe with two parallel monolithically integrated drug delivery channels. The inset shows the plane view optical microscopy image of the multielectrode (Pongrácz A. et al., 2012)

REFERENCES
PROCEDIA ENGINEERING 47: 281-284 (2012) ISSN 1877-7058
HOGYAN BEFOLYÁSOLJák A DENDRIMEREK A LIPID KETTŐSRÉTEG TÖLTÉSELOSZLÁSÁT ÉS RENDEZETTSÉGÉT: ÖSSZEGFREKVENCIA-KELTÉSI REZGÉSI SPEKTROSZKÓPIAI VIZSGÁLATOK

Keszthelyi Tamás, Nyitrai Gabriella, Héja László, Kardos Julianna

A poliamidoamin (PAMAM) dendrimerek nanoméretű, hiperelágazásos polimerek, amelyeknek ígéretes orvosbiológiai alkalmazásai közül a célzott gyógyszer nanohordozóként történő felhasználást és a génterápiát emeljük ki. Az 5-ös generációs (G5-NH₂) dendrimerek citotoxikus hatásáról és funkcionális neurotoxicitásáról több tanulmány beszámolt már, míg a 4.5-es generációs (G4.5-COONa) dendrimereknek ilyen hatásai nem ismeretek. A kationos és anionos dendrimerek sejtmembránnal való kölcsönhatásainak megértése elengedhetetlen ahhoz, hogy biztonságos orvosbiológiai alkalmazások legyenek kidolgozhatók.

A dendrimer-membrán kölcsönhatások jellemzésére összefrekvencia-keltési rezgési spektroszkópiát alkalmaztunk. Ez a másodrendű nemlineáris optikai módszer lehetővé teszi, hogy a membrán kettősréteg egyes rétegeinek szerkezetét egymástól függetlenül vizsgáljuk, továbbá bioaktív anyagokkal való kölcsönhatásaikat tanulmányozzuk.

Mindkét dendrimerrel való kölcsönhatás változásokat okozott a kettősrétegek szinképeiben, leginkább az OH sávok intenzitásáiban, ami a határfelületi vízréteg szerkezetének és töltésseloszlásának megváltozására utal. A G4.5-es dendrimer okozta OH amplitúdó-csökkenés valószínű oka a dendrimernek a kettősrétegeghez való nem specifikus kötődése, ami által lecsökken a határszél vízmolekuláinak rendezettsége és a lézersugarak számára elérhető vízmolekulák száma is. Az OH amplitúdók abszolút értéke csökkenése mellett a G5-ös dendrimer hatására az amplitúdók előjele is megfordult. Valószínűleg a G5-ös dendrimer pozitív töltésű amino csoportjai kötődnek a negatív töltésű kettősréteghoz, miközben az amino csoportok kötésben részt nem vevő kompenzálatlan töltései ellentétesre változtatják a határfelületi vízmolekulákra ható elektromos teret, ezáltal ellentétes irányba orientálva azokat.

Kevésbé szembetűnő, ám jelentős változások voltak megfigyelhetők a CH amplitúdók egymáshoz viszonyított értékeiben is. A metil antiszimmetrikus és szimmetrikus nyújtási rezgési amplitúdók megváltozott arányai a foszfolipidekben található alkillánkok dölésszögének a kölcsönhatás okozta megváltozását jelzik. A G4.5-es és G5-ös dendrimerek mindkét rétegben megváltoztatják az alkillánkok konformációját és rendezettségét is.
Polyamidoamine (PAMAM) dendrimers are nanosized, hyperbranched polymers with promising biomedical applications as nanocarriers in brain-targeted drug delivery and gene therapy. Cytotoxic effects and functional neurotoxicity of generation 5 PAMAM dendrimers (G5-NH₂) have been reported, while such effects are not known for carboxyl-functionalized generation 4.5 (G4.5-COONa) dendrimers. For the development of safe dendrimer-based biomedical applications it is necessary to gain an understanding of the detailed mechanism of the interactions of cationic and anionic dendrimers with cell membranes.

To characterize the dendrimer-membrane interactions we applied infrared-visible sum-frequency vibrational spectroscopy, a surface sensitive second-order non-linear optical technique that is capable of independently probing the structures of the two leaflets of solid supported lipid bilayers as well as their interactions with materials of biological relevance.

Interaction with both dendrimers lead to changes in the spectra of the bilayers, the most evident being the reduction of the OH band intensities, which are attributed to changes in the interfacial water structure and charge distribution. The decrease of the OH amplitudes upon injection of the G4.5 dendrimer is likely caused by the nonspecific attachment of the dendrimer to the bilayer, reducing the number of water molecules probed as well as disrupting their ordering. In addition to decrease of their absolute values, the G5 dendrimer led to a reversal of the sign of the OH stretch amplitudes. Most likely the positively charged amino groups on the G5 dendrimer surface bind to the negatively charged bilayer, while uncompensated positive charges of the amino groups not involved in the binding cause a reversal of the electric field felt by the interfacial water molecules, orienting them in the opposite way.

More subtle, nevertheless significant changes were seen in the relative magnitudes of the CH amplitudes. The methyl antisymmetric to symmetric stretch amplitude ratios are altered for both types of bilayer, implying changes in the tilt angles of the phospholipid alkyl chains. The conformational order of the phospholipid alkyl chains of both leaflets is also influenced by the G4.5 and G5 dendrimers.
A poli(vinil-klorid) (PVC) a harmadik legnagyobb mennyiségben gyártott és alkalmazott polimer a világon, így igen nagy mennyiségű PVC hulladék is képződik. Ennek lebontása és újrahasznosítása azonban még mindig nem megoldott kielégítően. Emiatt a PVC esetében új kémiai lehetőségek kutatása nagy jelentőséggel bír. Ehhez azonban ismerni kell a polimer láncban a feldolgozás során bekövetkezett szerkezeti változásokat és annak hatását a polimer stabilitására. Ugyan a PVC termékeket általában oxigén jelenléteben gyártják nagy hőmérsékleten (180-240 °C), a kutatások nagy része még napjainkban is az inert atmoszférában bekövetkező változások tanulmányozására helyezi a hangsúlyt. Ezért szisztematikus vizsgálatokat végeztünk a PVC termooxidatív degradációjának vizsgálatára, valamint arra, hogy a legáltalánosabban használt adalékanyagok hogyan hatnak ezekre a folyamatokra. Meglepő módon azt találtuk, hogy az iparban legnagyobb mennyiségben használt lágyítójával, a dioktil-ftaláttal (DOP) készített oldat oxidatív degradációja a PVC olyan nagymértékű láncszakadását eredményezte (1. ábra) (Szarka Gy. és Iván B., 2007; Szakács T. et al., 2007; Szarka Gy. és Iván B., 2009; Szarka Gy. és Iván B., 2010; Szarka Gy. et al., 2012; Szarka Gy. és Iván B., 2012), hogy olajszerű termékek keletkeztek, amint az alábbi 2. ábra mutatja. További vizsgálataink pedig azt eredményezték, hogy az iparban egyik legáltalánosabban használt antioxidáns, a 2,6-di-terc-butil-4-metilfenol (BHT) sem alkalmas a PVC termooxidatív láncszakadásának meggátlására, vagyis antioxidáns tartalmú PVC hulladékok esetében is alkalmazható az általunk kidolgozott eljárás a PVC nagymértékű enyhe termooxidatív körülmények közötti lebontására. Kimutattuk azt is, hogy szemben a kiindulási kezeletlen PVC-vel, az általunk előállított oxidált PVC széles összetétel tartományban képes elegyedni a biodegradábilis politejsavval, ami lehetőséget teremthet teljesen újszerű, PVC hulladékból származó blendekek készítésére biodegradábilis polimerekkel.

1. ábra Elúciós térfogat, azaz láncszakadás növekedése a reakcióidő növekedésével

2. ábra Olajszerű termék képződése 4 óra reakcióidő után
1. Szarka Gy, Iván B: Environmentally benign mild degradative transformation of poly(vinyl chloride) into useful products
POLYMER PREPRINTS 48: 584-585 (2007)

2. Szakács T, Szarka Gy, Pollreisz F, Szesztay A, Iván B: A PVC termooxidatív láncszakadása oldatban
MŰANYAG ÉS GUMI 44: 89-93 (2007)

3. Szarka Gy, Iván B: Degradative transformation of poly(vinyl chloride) under mild oxidative conditions

4. Szarka Gy, Iván B: Environmentally Advantageous Utilization of Degraded Poly(vinyl chloride)
POLYMER PREPRINTS 51: 681-682 (2010)

5. Szarka Gy, Domján A, Szakács T, Iván B: Oil from poly(vinyl chloride): unprecedented degradative chain scission under mild thermooxidative condition
POLYMER DEGRADATION AND STABILITY 97: 1787-1793 (2012)

6. Szarka Gy, Iván B: Thermal properties, degradation and stability of poly(vinyl chloride) predegraded termooxidatively in the presence of dioctyl phthalate plasticizer
JOURNAL OF MACROMOLECULAR SCIENCE – PURE AND APPLIED CHEMISTRY (megjelenés alatt, 2012)
Poly(vinyl chloride) (PVC) is produced and used in the third largest amount among polymers in the world. This way, huge amounts of PVC waste are formed. The break down and recycling of this polymer have not been solved contently yet. Because of this, the research on new chemical opportunities has great importance. For this, the structural changes in the polymer chain during processing should be known and also the effect of it on the stability of the polymer. Although PVC products are usually produced in the presence of oxygen at high temperatures (180-240 °C), most of the research are still dealing with the changes in inert atmosphere. Therefore, systematic investigations were carried out by us on the thermooxidative degradation of PVC, and the effect of the most commonly used additives on this process. Surprisingly, it was found that the oxidative degradation of PVC in the most commonly used plasticizer, dioctyl phthalate (DOP), results in significant chain scission (Fig.1) (Szarka Gy. and Iván B., 2007; Szakács T. et al., 2007; Szarka Gy. and Iván B., 2009; Szarka Gy. and Iván B., 2010; Szarka Gy. et al., 2012; Szarka Gy. and Iván B., 2012), and oily products are formed as shown by Figure 2. Our further investigations revealed that the industrially widely used antioxidant, 2,6-di-tert-butyl-4-methyl phenol (BHT), is not able to prevent thermooxidative chain scission. This means that our process is applicable in the case of PVC waste with BHT content to produce partial break down of PVC under mild thermooxidative circumstances. It was found by us that against the untreated PVC our oxidized PVC is miscible with biodegradable poly(lactic acid) in a wide range of composition. This offers an opportunity to produce new polymer blends from PVC waste and biodegradable polymers.
REFERENCES
1. Szarka Gy, Iván B: Environmentally benign mild degradative transformation of poly(vinyl chloride) into useful products
POLYMER PREPRINTS 48: 584-585 (2007)
2. Szakács T, Szarka Gy, Pollreisz F, Szesztay A, Iván B: A PVC termooxidatív láncszakadása oldatban
MŰANYAG ÉS GUMI 44: 89-93 (2007)
3. Szarka Gy, Iván B: Degradative transformation of poly(vinyl chloride) under mild oxidative conditions
4. Szarka Gy, Iván B: Environmentally Advantageous Utilization of Degraded Poly(vinyl chloride)
POLYMER PREPRINTS 51: 681-682 (2010)
5. Szarka Gy, Domján A, Szakács T, Iván B: Oil from poly(vinyl chloride): unprecedented degradative chain scission under mild thermooxidative condition
POLYMER DEGRADATION AND STABILITY 97: 1787-1793 (2012)
6. Szarka Gy, Iván B: Thermal properties, degradation and stability of poly(vinyl chloride) predegraded termooxidatively in the presence of dioctyl phthalate plasticizer
Közismert tény, hogy a rendelkezésre álló kőolaj- és földgázkészletek belátható időn belül kimerülnek, ezért szükséges a fosszilis alapú energia és vegyipari alapanyagok kiváltása megújuló energiahordozókra és alapanyagokra. A megújuló bioanyagok sorába tartoznak az úgynevezett „második generációs” bioüzemanyagok és szerves vegyipari alapanyagok, amelyeket az étkezési célokra nem használható biomasszából állítanak elő (Hajes D.J., 2009). Különösen igéretes bioanyagok a gamma-valerolakton (GVL) és a levulinsav-etilészter (ELA) (Horváth I.T. et al., 2008). Reakciókinetikai vizsgálatuk érdekes és fontos alapkutatási és gyakorlati, égéskémiai és légkörkémiai szempontból egyaránt.

A GVL és ELA reakciókinetikai vizsgálatát az úgynevezett „direkt” kísérleti módszerek alkalmazásával végeztetem, amikor a reagáló atomok és szabadgyökök megfigyelése közvetlenül történik (Farkas M. et al., 2011). Az OH + GVL reakció tanulmányozására az impulzuslézer-fotolízist (PLP) és a gyorsáramlásos (DF) módszert alkalmaztam (Farkas M. et al., 2012).

A szobahőmérsékleten meghatározott sebességi együtthatók jól egyeznek, így megállapíthatjuk, hogy a tanulmányozott reakcióknak nincs nyomásfüggése. A gyorsáramlásos módszerrel elvégeztettem a reakció hőmérsékletfüggőségeit vizsgálatát a 298-423 K hőmérséklettartományban. Megállapítottam, hogy a sebességi együttható csak kis mértékben nő a hőmérséklettel.

Az ELA termikus bomlásának vizsgálatát egy külföldi tanulmányút keretében az 1. ábrán látható lökéshullámcső berendezés (ST) végeztettem. A reakció kinetikáját a bomlás során keletkező H-atom rezonancia-abszorpcióis (ARAS) detektálásával tanulmányoztuk. Az 1300-1500 K hőmérséklet tartományban elvégzett kísérletek alapján a bomlási reakcióra a korábbi várakozásokkal szemben, jóval kisebb aktiválási energia értéket kaptunk.
IRODALOMJEGYZÉK
1. Hayes DJ: An examination of biorefining processes, catalysts and challenges
 CATALYSIS TODAY 145:138-151 (2009)
2. Horváth IT, Mehdi H, Fábos V, Boda L, Mika LT: Gamma-valerolactone: A sustainable liquid for energy
 and carbon-based chemicals
3. Farkas M, Illés Á, Petri B, Dóbé S: Direct rate constant for the reaction of OH radicals with the biofuel
 molecule ethyl levulinate
 REACTION KINETICS, MECHANISMS AND CATALYSIS 104(2): 251-257 (2011)
4. Farkas M, Szabó E, Zsibrita D, Dóbé S, Lendvay G: Kinetics and mechanism of the reaction of OH radicals
 with γ-valerolactone in the gas phase
 THE JOURNAL OF PHYSICAL CHEMISTRY (benyújtás alatt, 2012)
KINETIC STUDY OF THE ELEMENTARY REACTIONS OF SECOND GENERATION BIOFUELS IN THE GAS PHASE

Mária Farkas

It is well known that reserves of crude oil and natural gas will be exhausted in the foreseeable future. It is therefore necessary to find renewable substitutes for fossil fuels and fossil-based chemical feedstocks. The renewable, so-called „second-generation” (2G) biofuels and organic feedstocks are produced from non-edible hemicellulosic biomass (Hayes D.J., 2009). Especially promising 2G biomaterials are the γ-valerolactone (GVL) and ethyl levulinate (ELA) (Horváth I.T. et al., 2008). Reaction kinetic studies of GVL and ELA are interesting and important from a basic scientific point of view and also for practical reasons related to combustion and atmospheric chemistry.

I have performed kinetic investigations of GVL and ELA by using „absolute” experimental methods, when the reacting atoms and free radicals are observed directly (Farkas M. et al., 2011). Rate coefficients for the reaction of GVL with OH radicals have been determined by employing both the fast discharge flow (DF) and pulsed laser photolysis (PLP) experimental techniques (Farkas M. et al., 2012).

The rate coefficients determined with the two methods agree well with each other at room temperature implying that the studied reaction has no pressure dependence. The temperature dependence of the OH + GVL reaction was studied in the temperature range of 298 - 423 K using the DF method. The rate coefficient has been found to increase only slightly with increasing temperature.

The thermal decomposition of ELA was studied in the shock tube (ST) apparatus that is shown in Fig. 1 during my study tour in Germany. In the decomposition reaction of ELA, hydrogen atoms are formed which are detected by H-atom resonance absorption.

The ST experiments were carried out in the temperature range of 1300 - 1500 K. The activation energy of the decomposition reaction has been found much smaller than expected previously.
REFERENCES
1. Hayes DJ: An examination of biorefining processes, catalysts and challenges
 CATALYSIS TODAY 145:138-151 (2009)
2. Horváth IT, Mehdi H, Fábos V, Boda L, Mika LT: Gamma-valerolactone: A sustainable liquid for energy
 and carbon-based chemicals
3. Farkas M, Illés Á, Petri B, Dóbé S: Direct rate constant for the reaction of OH radicals with the biofuel
 molecule ethyl levulinate
 REACTION KINETICS, MECHANISMS AND CATALYSIS 104(2): 251-257 (2011)
4. Farkas M, Szabó E, Zsibrita D, Dóbé S, Lendvay G: Kinetics and mechanism of the reaction of OH radicals
 with γ-valerolactone in the gas phase
 THE JOURNAL OF PHYSICAL CHEMISTRY (benyújtás alatt, 2012)
 CHEMISTRY (to be submitted, 2012)
KÜLÖNBÖZŐ ELJÁRÁSOKKAL ELŐKEZELT BIOMASSZA MINTÁK VIZSGÁLATA TERMOANALITIKAI MÓDSZEREKKEL
Sebestyén Zoltán, Jakab Emma, May Zoltán, Várhegyi Gábor

A Föld kőolaj és földgáz készletei a növekvő felhasználási ütemüknek köszönhetően egyre zsugorodnak, ennek értelmében kitermelésük napról napra költségesebbé váló. A fosszilis üzemanyagok egy része megújuló energiaforrásokkal. A bioetanol autók motorjaiban történő előkezelése során annyi CO₂-ot juttatunk a környezethez vissza, mint amennyit a növény élete során megkötött. Ha ezt a bioüzemanyagot a növények emberi fogyasztásra alkalmatlan részéből állítjuk elő (második generációs, lignocellulóz alapú bioetanol előállítás), akkor megelőzhető az élelmiszerárak drasztikus emelkedése.

Az enzimes hidrolízis lépése előtt az alapanyagot előkezelés alá kell vetni, hogy a lignocellulózok komplex struktúráját megbontsuk, annak érdekében, hogy a cellulózt degradáló enzimek hozzáférjenek a szubstrátumhoz. Lúgos előkezelésen átesett kendermintákat és gőzrobbantott fás- és lágyszárú biomassza mintákat vizsgáltuk termoanalitikai módszerek, termogravimetria-tömegspektrometria (TG-MS) és pirolízis-gázkromatográfia-tömegspektrometria (Py-GC-MS) segítségével. A minták alkáliion-tartalmát induktív csatolású plazma-optikai emissziós spektrometria (ICP-OES) segítségével határoztuk meg.

Az előkezelés módosította a biomassza minták kémiai összetételét és szerkezetét. Ezzel együtt a minták hőbomlási paraméterei is megváltoztak. A cellulóz és a hemicellulóz frakció degradálódott (depolimerizáció és a kristályszerkezet megváltozása) és a lignin molekulák funkciós csoportjai lehasadtak. Az előkezelések hatására megváltozott a minták alkáliion-tartalma, ami jelentősen befolyásolta a bomlási mechanizmust. A nátrium és kálium ionok megnövekedett koncentrációjának eredményeként a minták jellemző bomlási útja a fragmentációval járó szenes maradék képződés, míg az alkáli ionok hiányában a depolimerizáció.

Az elért eredményeket főkomponens analízis (PCA) segítségével elemzettük annak érdekében, hogy korrelációt állapítsunk meg a minták hőbomlási paraméterei és az alkáliion-tartalmuk, valamint a szerkezetükben bekövetkezett változások között.
Due to the growing utilization, the oil and gas reserves of the Earth are shrinking and its extraction becomes more expensive day by day. A part of the fossil fuels can be substituted with renewable energy sources. Owing to the burning of the bioethanol in the automobile engines they release as much CO₂ to the air, as the plant absorbed during its life. The biofuels can be produced from the non-food parts of the plants (second generation, lignocellulosic bioethanol fermentation) preventing the drastic rising of the food prices.

Before the enzymatic step, the raw materials must be pretreated in order to break the complex structure of the lignocellulosic fibers and the cellulose fraction can be degraded by the cellulolytic enzyme system.

Alkali pretreated hemp and steam exploded woody and herbaceous samples were measured using thermoanalytical methods: thermogravimetry-mass spectrometry (TG-MS) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). The alkali ion contents of the samples were determined using inductively coupled plasma-optical emission spectrometry (ICP-OES).

The chemical composition and structure of the biomass samples was changed by the alkali washing and the steam explosion, which caused changes in the thermal degradation parameters. The cellulose and hemicellulose fraction degraded (depolymerization and changing of the crystallinity) and the functional groups of the lignin molecules split off.

During the pretreatments the alkali ion concentrations of the biomass samples have been changed, which affects the decomposition mechanisms. With increased alkali ion content, the preferred decomposition way of the samples is the fragmentation and the char formation.

If the alkali ion content decreases during the pretreatment the preferred decomposition mechanism is the depolymerization.

The results were analyzed using principal component analysis (PCA) in order to find correlation between the thermal decomposition parameters and the alkali ion contents as well as the modified structure of the biomass samples.
Hétköznapi és közkeletű megítélés szerint szennyvízkezelés alatt a közgyűjtő csatornán összefolyó szennyvizek központi kezelését, valamint az ipari szennyvizeknek a csatornába, vagy természetes befogadóba történő bevezetését megelőző tisztítását, kezelését értjük.

Előadásunkban a szennyvizek fogalmát tágabban értelmezzük, szennyvízként kezelve minden szennyezett vizes közeget. E tekintetben szennyvízkezelésként kezeljük, pl. a talajt, illetve talajvizeket ért szennyezések problematikáját is.

Az MTA TTK AKI Környezetvédelmi Laboratóriumának e területen végzett munkáiból vett konkrét gyakorlati példákon mutatjuk be, milyen speciális problémát jelent a kistelepülések kis térfogatáramú szennyvizeinek kezelése, milyen reális célkitűzések és megoldási módozatok lehetnek a talaj/talajvízszennyezés okozta problémák kezelésére.

Míg a kistelepüléseknél a szennyvíz kis térfogatárama, heterogenitása és esetlegessége jelent problémát, s okoz néhány esetben a lehetőségeket, előírások és kötelezettségek között feloldhatatlan konfliktust, addig a szennyezett talajvizek esetén magának a szennyezett közegnek az elérhetősége szab határt a szennyezőanyagok eltávolítási lehetőségeinek, a kárenyhítés módozatainak.

Előadásunkban részletesebben is beszámolunk egy, a szennyezések szűk, behatárolt spektrumát tartalmazó (ipari) szennyvizek kezelésére alkalmazható, akár mobil rendszerként is működtethető elektrokémiai megoldásról, s ennek laboratóriumunkban végzett vizsgálatainak eredményeiről.
Sewage-treatment is commonly known as purification of sewage water at a central plant collected through the public sewer, as well as the industrial purification before sewage disposal into canals and natural receivers.

In this lecture we use an extended meaning of sewage and sewage-treatment, including all types of contaminated water, soil and subsoil water and their purification.

Based on our own works in the IMEC RCNS HAS Environmental Laboratory, we illustrate the specific problems of the handling of low wastewater discharge in small villages and of selecting realistic objectives and methods to solve the soil / groundwater pollution problems with pragmatic examples.

In small villages the main problem is caused by the low discharge, heterogeneity and unpredictable quality of sewage, which occasionally lead to irresolvable conflict between possibilities, regulations and commitments. In the case of polluted groundwater however, the availability of the contaminated medium itself restricts the potential ways of pollutant removal and damage limitation.

In our presentation we give a detailed introduction of an electrochemical method, which can be applied to the treatment of (industrial) sewage containing a limited range of pollutants, operable even as a mobile system. We also report on the results of our investigation into this method carried out in our laboratory.
A tudományos poszterek jegyzéke

1. Mária Rábai, Nóra Veronika Nagy, Zoltán May, Klára Szentmihályi
 Microelements in drug and teas of Plantago lanceolata L.
 Trace Elements in the Food Chain
 15-17 November 2012, Visegrád, Hungary

2. Caroline West, Eric Lesellier, Károly Héberger
 Sum of Ranking Differences to Compare Packed Columns for Supercritical Fluid Chromatography
 XIIIth Conference on Chemometrics in Analytical Chemistry
 25-29 June 2012, Budapest, Hungary

3. Loránd Románszki, Datsenko I, Judit Telegdi, Wolfgang Sand, Lajos Nyikos
 Combating microbial adhesion on alloys of industrial importance
 Advanced Macromolecular Systems Across the Length Scales, "Smart, Nanostructured Systems for Controlled Molecular Release and Biological Interfaces"
 3-6 June 2012, Siófok, Hungary

4. Loránd Románszki, Miklós Mohos, Judit Telegdi, Zsófia Keresztes, Lajos Nyikos
 A comparison of contact angle measurement results obtained on bare, treated, and coated alloy samples by both dynamic sessile drop and Wilhelmy method
 10th Conference on Colloid Chemistry: Innovative systems for sustainable development
 29-31 August 2012, Budapest, Hungary

5. Kenyó Csaba, Móczó János, Renner Károly, Pukánszky Béla
 Természetes töltőanyagokkal módosított PVC kompozitok: határfelületi kölcsönhatások és mikromechanikai deformációs folyamatok
 International Conference on Biobased Polymers and Composites (BiPoCo 2012)
 2012. május 27-31., Siófok, Magyarország

6. Gergely Keledi, András Sudár, Burgstaller Christoph, Károly Renner, Béla Pukánszky
 Deformation mechanisms and optimization of properties in multi-component, multi-phase wood reinforced recycled PP systems
 International Conference on Biobased Polymers and Composites (BiPoCo 2012)
 27-31 May 2012, Siófok, Hungary

7. Dóra Tátraaljai, Balázs Vágó, János Kovács, Enikő Földes, Béla Pukánszky
 Study of the effect of quercetin on the melt stability of polyethylene
 Modification Degradation Stabilization Conference 2012
 2-6 September 2012, Prague, Czech Republic

8. Romhányi Vivien, Pataki Piroska, Renner Károly, Pukánszky Béla
 Effect of Interactions on the Properties of Thermoplastic Polymer/Lignin Blends
 Polymeric Materials
 12-14 September 2012, Halle, Germany
9 Faludi Gábor, Csizmadia Réka, Renner Károly, Móczó János, Pukánszky Béla
Faliszt Kémia Módosítása
International Conference on Biobased Polymers and Composites (BiPoCo 2012)
2012. május 27-31., Siófok, Magyarország

10 Zoltán Sebestyén, Zoltán May, Bálint Sipos, Kati Réczey, Emma Jakab
Structural characterization of steam exploded biomass samples by thermal methods
19th International Symposium on Analytical and Applied Pyrolysis
21-25 May 2012, Linz, Austria

11 Szabolcs Harnos
Novel Cu2In/alumina catalyst for the hydroconversion of biomass-derived acetic acid
11th Pannonian International Symposium on Catalysis
3-7 September 2012, Obergurgl, Austria

12 Cecília A. Badari, Ferenc Lónyi, József Valyon
Steam reforming of bio-oil from pyrolysis of MBM over particulate and monolith supported Ni/γ-Al2O3 catalysts
11th Pannonian International Symposium on Catalysis
3-7 September 2012, Obergurgl, Austria

13 Katalin Majrik Szijjártóné, Emília Tálás, István Sajó, András Tompos
Photocatalytic reforming of methanol over transition metal modified TiO2 semiconductors
15th International Congress on Catalysis 2012
1-6 July 2012, München, Germany

14 Gábor Pál Szijjártó, András Tompos, Zoltán Pászti, Ervin Szabó, István Sajó, András Erdőhelyi, György Radnóczi, József Margitfalvi
Active sites in Ni/MgAl2O4 based catalysts designed for steam reforming of ethanol
15th International Congress on Catalysis 2012
1-6 July 2012, München, Germany

15 Dorottya Gubán, Andrea Beck, Irina Borbáth, László Guczi, András Tompos, Zoltán Pászti, István Sajó
Tin modified Pt electrocatalysts for methanol electrooxidation designes for use in direct methanol fuel cells
15th International Congress on Catalysis 2012
1-6 July 2012, München, Germany

16 Róbert Barthos, József Valyon
Heterogenization of Wacker-reaction over Pillared Layered Materials
11th Pannonian International Symposium on Catalysis
3-7 September 2012, Obergurgl, Austria
17 Márton Kollár, Andrea Cecília Badari, György Pölczmann, József Valyon
Catalytic hydroconversion of hexadecane and Fischer-Tropsch wax on micro and mesoporous catalysts
11th Pannonian International Symposium on Catalysis
3-7 September 2012, Obergurgl, Austria

18 János Bozi, Marianne Blazsó, Ágnes Szegedi
Catalytic Pyrolysis of Polyamides and Polyurethanes in the Presence of Y Zeolites
19th International Symposium on Analytical and Applied Pyrolysis
21-25 May 2012, Linz, Austria

19 Zsuzsanna Czégény, Emma Jakab, Marianne Blazsó
Pyrolysis of wood, cellulose, lignin – brominated epoxy oligomer flame retardant mixtures
19th International Symposium on Analytical and Applied Pyrolysis
21-25 May 2012, Linz, Austria

20 Mária Farkas, Emese Szabó, Ádám Illés, Balázs Petri, Dóra Zsibrita, Sándor Dóbé
Reaction kinetics and photochemical study of the atmospheric fate of the biofuel molecules ethyl levulinate and gamma-valerolactone
34th International Symposium on Combustion, Warsaw University of Technology
29 July - 3 August 2012, Warsaw, Poland

21 Viola Pomozi, Krisztina Fülöp, Christopher N. Brampton, Tamás Arányi, Olivier Le Saux, András Váradi
In vivo rescue of human ABCC6 disease-causing mutants in mouse liver
9th Annual North American ABC Meeting
27-28 September 2012, Frederick, Maryland, USA

22 Natália Tőkési, Attila Lehotzky, Judit Oláh, István Horváth, Sándor Szunyogh, Judit Övádi
Multifarious functions of TPPP/p25 on microtubule dynamics and organization
The 27th European Cytoskeletal Forum Meeting
3-7 November 2012, Pécs, Hungary

23 Roland Boha, Brigitta Tóth, Zsófia Anna Gaál, Márk Molnár
The effect of age on time dependent EEG-synchronization changes during the performance of mental arithmetic task
16th World Congress of Psychophysiology
13-17 September 2012, Pisa, Italy

24 Tamás M. Böhm, Robert W. Mill, Alexandra Bendixen, István Winkler, Susan L. Denham
An abstract model of auditory stream segregation
The Sixth Conference on Mismatch Negativity (MMN) and its Clinical and Scientific Application, 1-4 May 2012, The Graduate Center, New York, USA
25 Zsófia Kardos, Bálint File, Brigitta Tóth, Roland Boha, Zoltán Hidasi, Zsófia Anna Gaál, Cornelis Jan Stam, Márk Molnár
Longitudinal study of resting state functional network characteristics in mild cognitive impairment
52nd Annual Meeting of Society of Psychophysiology Research
19-23 September 2012, New Orleans, Louisiana, USA

26 Richárd Fiáth, Bálint Péter Kerekes, György Karmos, István Ulbert
Laminar analysis of the slow oscillation in rat somatosensory cortex under ketamine/xylazine anesthesia
IBRO International Workshop
2012, 19-21 January 2012, Szeged, Hungary

27 István Ulbert, Richárd Fiáth, György Karmos, Domonkos Horváth, Bálint Péter Kerekes, Arno A. Aarts, Patrick Ruther, Hercules P. Neves
Measuring thalamocortical dynamics with high channel count electronic depth control probes
Neuroscience 2012, Society for Neuroscience, 42nd Annual Meeting
13-17 October 2012, New Orleans, USA

28 Domonkos Horváth, Richárd Fiáth, István Ulbert, György Karmos
Interactions of auditory and thalamic electrical stimulation elicited auditory cortical evoked responses in the cat
8th FENS Forum of Neuroscience
14-18 July 2012, Barcelona, Spain

29 Krisztina Kecskés-Kovács, István Sulykos, István Czigler
Visual mismatch negativity is sensitive to higher-order spatial regularities
The Sixth Conference on Mismatch Negativity (MMN) and its Clinical and Scientific Application, 1-4 May 2012, The Graduate Center, New York, USA

30 István Sulykos, István Czigler
Visual mismatch negativity to parvocellular and magnocellular stimulus dimensions: separated mechanism?
The Sixth Conference on Mismatch Negativity (MMN) and its Clinical and Scientific Application, 1-4 May 2012, The Graduate Center, New York, USA

31 Emília Tóth, L. Entz, D. Fabó, C. J. Keller, S. Bickel, L.R. Kozák, L. Eross, I. Ulbert, A.D. Mehta
Pathological and Functional Network connectivity analysis in the Human Brain Using Single Pulse Electrical Stimulation
IBRO International Workshop 2012
19-21 January 2012, Szeged, Hungary

32 Irén Barkaszi, István Czigler, László Balázs
Stimulus complexity effects on the orienting response
11th International Conference on Cognitive Neuroscience (ICON XI)
25-29 September 2011, Palma, Mallorca, Spain
<table>
<thead>
<tr>
<th>No.</th>
<th>Authors</th>
<th>Title</th>
<th>Conference/Event</th>
<th>Date/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Eszter Turi, Krisztina Lakatos, Gábor Stefanics, Judit Gervai</td>
<td>Development of emotion recognition in infancy - a longitudinal analysis</td>
<td>European Conference on Developmental Psychology</td>
<td>23-27 August 2011, Bergen, Norway</td>
</tr>
<tr>
<td>34</td>
<td>Magda Balázs, Tóth Katalin, Temesvári Manna, Monostory Katalin, Szabó Pál</td>
<td>Valproát és metabolitjai vérszintjének meghatározása LC-MS/MS technikával</td>
<td>TOX' 2012 Tudományos Konferencia</td>
<td>2012. október 17-19., Hévíz, Magyarország</td>
</tr>
<tr>
<td>35</td>
<td>Manna Temesvári, Katalin Tóth, Pál Szabó, Flóra Kiss, Enikő Sárváry, László Ablonczy, Katalin Monostory</td>
<td>Tacrolimus dose adjustment to the drug-metabolizing capacity of a heart-transplant patient</td>
<td>FEBS3 konferencia: From molecules to life and back</td>
<td>13-17 June 2012, Opatija, Croatia</td>
</tr>
<tr>
<td>37</td>
<td>Szabó Mónika, Veres Zsuzsa, Jemnitz Katalin</td>
<td>Összehasonlító gyógyszer-transsporter interakció vizsgálatai humán és patkány hepatocitákon, valamint krioprezervált HepaRG sejteken</td>
<td>Farmakokinetika és Gyógyszermetabolizmus Szimpózium</td>
<td>2012. április 18-20., Galyatető, Magyarország</td>
</tr>
<tr>
<td>40</td>
<td>Ágnes Simon, Ákos Bencsura, István Mayer, Julianna Kardos</td>
<td>Homology modelling of gamma-aminobutyric acid transporter dimers in the occluded and inward open states</td>
<td>FB35 Transmembrane Transporters in Health and Disease – Symposium</td>
<td>24-25 September 2012, Bécs, Austria</td>
</tr>
</tbody>
</table>
41 Zsombor Miskolczy, László Biczók
Effect of cucurbiturils on the spiropyran-merocyanine photochromic transformations
XXIVth IUPAC Symposium on Photochemistry
15-20 July 2012., Coimbra, Portugal

42 Marcell Pálmai, Lívia Nagyné Naszályi, Judith Mihály, Zoltán Varga, Gábor Tárkányi, András Lőrincz, Imola Csilla Szigyártó, Teréz Kiss, Tibor Kremmer, Attila Bóta
Bifunctional silica nanoparticles bearing aminopropyl and squaric acid functional groups
Colloids and Nanomedicine 2012
15-17 July 2012, Amszterdam, Nederland

43 Tamás Kárpáti, A. E. Pap, M. Adam, P. Fürjes, S. Kulinyi
Si based MEMS Capacitive Pressure Sensor Design and Manufacturing
ICMAST 2012 (2nd International Conference on Materials and Applications for Sensors and Transducers)
24-28 May 2012, Budapest, Hungary

44 T. Kárpáti, Anita Pongrácz, S. Kulinyi, R. Végyári, A. Nagy, A. E. Pap, G. Battistig
Packaging of a 3-axial Piezoresistive Force Sensor with Backside Contacts
ICMAST 2012 (2nd International Conference on Materials and Applications for Sensors and Transducers)
24-28 May 2012, Budapest, Hungary

45 Gergely Márton, Z. Fekete, I. Bakos, G. Battistig, A. Pongrácz
Deep-Brain Silicon Multielectrodes with Surface-Modified Pt Recording Sites
IEEE Sensors 2012
28-31 October 2012, Taipei, Taiwan

46 Zoltán Fekete, G. Huszka, A. Pongrácz, T. Kárpáti, E. Vrouwe, P. Fürjes
Integrated microfluidic functions for nanopore based biosensors
ICMAST 2012 (2nd International Conference on Materials and Applications for Sensors and Transducers)
24-28 May 2012, Budapest, Hungary

Integrated microfluidic environment for solid-state nanopore sensors
EURO_SENSORS XXVI
9-12 September 2012, Kraków, Poland

48 Péter Fürjes, Z. Fekete, L. Illés, A. L. Tóth, G. Battistig, R. E.Gyurcsányi
Effects of the Focused Ion Beam parameters on nanopore milling in solid state membranes
OATK 2011
9-11 October 2011, Balatonkenese, Hungary
49 Eszter Holczer, Z. Fekete, P. Fürjes
Surface modification of PDMS based microfluidic systems by tensides
OATK 2011
9-11 October 2011, Balatonkenese, Hungary

50 Zoltán Fekete, P. Fürjes
Buried microchannels in silicon with planar surface
OATK 2011
9-11 October 2011, Balatonkenese, Hungary

51 Péter Fürjes, Z. Fekete, E. G. Holczer, E. Tóth, K. Iván, I. Bárány
Particle mixing by chaotic advection in polymer based microfluidic systems
OATK 2011
9-11 October 2011, Balatonkenese, Hungary

52 Béla Pécz, Zsófia Baji, Zoltán Lábadi, A. Kovács
Microscopy of ZnO layers deposited by ALD
TCM 2012, 4th International Symposium on Transparent Conductive Materials
21-26 October 2012, Hersonissos, Crete, Greece

53 Fanni Misjak, Zs. Czigány, A. Kovács és G. Radnóczl
Nanostructure of sputtered Cu35Mn65 alloy films
The 15th European Microscopy Congress
16-21 September 2012, Manchester Central, United Kingdom

54 E. Bokányi, Z. Erdélyi, F. Misjak, György Radnóczl
Producing Cu-Ag core-shell nanoparticles by spinodal decomposition
The 15th European Microscopy Congress
16-21 September 2012, Manchester Central, United Kingdom

55 Tamás Kárpáti, A.E. Pap, M Ádám, J. Ferencz, P. Fürjes, I. Bárány
Electrostatic Force Detection During Anodic Wafer Bonding
IEEE Sensors 2012
28-31 October 2012, Taipei, Taiwan

56 Petra Bombicz, Petra Smie, Ewald Sattler
Cocrystal constructed of one component?
European Crystallographic Meetings 27
6-11 August 2012, Bergen, Norway

57 Anna Palló, Éva Gráczer, Angelo Merli, Péter Závodszy, Mária Vas, Manfred S. Weiss
Distorted substrate conformation in the quaternary complex of isopropylmalate
dehydrogenase
EMBO-PEPC8 Practical Course, EMBL
3-11 September 2012, Hamburg, Germany
58 Eszter Tóth, Oliver Ozohanics, Balázs Bobály, László Drahos, Károly Vékey
Isolation and mass spectrometric analysis of blood plasma proteins
6th Central and Eastern European Proteomics Conference
14-17 October 2012, Budapest, Hungary

59 Lilla Turiák, Petra Misják, Krisztina Pálóczy, Tamás G. Szabó, Borbála Aradi, Oliver
Ozohanics, László Drahos, Edit Buzás, Károly Vékey
Proteomic comparison of thymocyte-derived extracellular vesicle populations by mass
spectrometry
6th Central and Eastern European Proteomics Conference
14-17 October 2012, Budapest, Hungary

60 Lilla Turiák, Oliver Ozohanics, Angel Puerta, Mercedes de Frutos, Károly Vékey,
László Drahos
Mass spectrometry analysis of glycosylation patterns of α-1-acid glycoprotein (AGP) as
a potential biomarker of atherosclerosis
27th International Symposium on Microscale Bioseparations and Analyses
12-15 February 2012, Geneve, Italy

61 Zsolt Jakab, Péter Fügedi
The Usefulness of orthogonal protecting Group strategy: synthesis of four heparin
tetrasaccharides from a Single protected intermediate
26th International Carbohydrate Symposium
22-27 July 2012, Madrid, Spain

62 Gábor Érsek, Ákos Szabó, Béla Iván
Synthesis and Characterisation of Amphiphilic Polymer Conetworks Based on
Polyisobutylene and Poly(Di(Ethylene Glycol) Methyl Ether Methacrylate)
76th Prague Meeting On Macromolecules Polymers In Medicine 2012
5 July 2012; Prague, Czech Republic

63 Csaba Fodor, Gergely Kali, Attila Domján, Péter Németh, Katalin Zihné Perényi,
Renáta Bánfi, Ralf Thomann, Rolf Mühlaupt, Béla Iván
Nanostructured Amphiphilic Polymer Conetworks and Nanohybrids
10th Conference on Colloid Chemistry
29-31 August 2012, Budapest, Hungary

64 Dániel Fegyverneki, Tibor Soós
Borane Catalyzed Hydrosilylation of Carbonyl Compounds, and Mukaiyama Aldol
Reaction
Ischia Advanced School of Organic Chemistry
22-26 September 2012, Sant’Angelo-Ischia, Italy

65 Dániel Vajk Horváth, Roberta Ferenczi-Palkó, Tibor Soós
Synthesis of tri- and tetrasubstituted benzene derivatives organocatalytically
4th EuCheMS Chemistry Congress
26-30 August 2012, Prague, Czech Republic
66 **Eszter Varga**, László T. Mika, György Kardos, Tibor Soós
Kinetic investigation of a cinchona-based organocatalytic Michael addition
4th EuCheMS Chemistry Congress
26-30 August 2012, Prague, Czech Republic

67 **Szilárd Varga**, Klársa Aradi, Csaba Szántay, Tibor Soós
Synthesis of tricyclic indole derivatives via asymmetric organocatalysis
4th EuCheMS Chemistry Congress
26-30 August 2012, Prague, Czech Republic
A bíráló bizottság tagjai

Bódízs Róbert
SE Magatartástudományi Intézet, kutatási igazgatóhelyettes, tudományos főmunkatárs
bodrob@net.sote.hu

Gyulai József
MTA TTK MFA, az MTA rendes tagja
gyulai.jozsef@ttk.mta.hu

Huszthgy Péter
BME Szerves Kémia és Technológia Tanszék, egyetemi tanár
huszthgy@mail.bme.hu

Nyulaszi László
BME Szervetlen és Analitikai Kémia Tanszék, tanszékvezető, egyetemi tanár
nyulaszi@mail.bme.hu

Orosz Ferenc
MTA TTK EI, igazgatóhelyettes, tudományos tanácsadó
orosz.ferenc@ttk.mta.hu

Pokol György
BME Vegyészmérnöki és Biomérnöki Kar, dékán, egyetemi tanár
pokol@mail.bme.hu
Programismertető

Helyszín: MTA Természettudományi Kutatóközpont
1025 Budapest, Pusztaszeri út 59-67., IV. épület, 2. emeleti előadóterem

2012. november 27.

<table>
<thead>
<tr>
<th>ID</th>
<th>Óra</th>
<th>Feladat</th>
<th>Helységi hely</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>30</td>
<td>Köszöntő (Szépvölgyi János, MTA TTK főigazgató)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>Homolya László (MFI): Egy epetransporter kalandos útja a sejtfelszín felé</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>00</td>
<td>Deák Andrea (SZKI): Őnszerveződő arany(I)tartalmú szupramolekulák</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>40</td>
<td>Szabó György, Szolnoki Attila (MFA): Az együttműködés természete</td>
<td></td>
</tr>
</tbody>
</table>

Közönségi

- **9:30** Köszöntő (Szépvölgyi János, MTA TTK főigazgató)
- **10:20** Homolya László (MFI): Egy epetransporter kalandos útja a sejtfelszín felé
- **11:00** Deák Andrea (SZKI): Őnszerveződő arany(I)tartalmú szupramolekulák
- **11:40** Szabó György, Szolnoki Attila (MFA): Az együttműködés természete

Ebéd

- **12:30** – **13:30**
 - Mészáros Bálint (EI): Funkcionális helyek becslése rendezetlen fehérjékben
 - Kalmár Lajos (EI): A rendezetlen fehérjék funkcionális evolúciója

13:40 Bacquet Caroline (EI): Transcriptional regulation of the human ABCC6 gene

Számlázás

- **13:50** Mészáros Bálint (EI): Funkcionális helyek becslése rendezetlen fehérjékben
- **14:10** Tóth Judit (EI): A dUTPáz enzimcsalád funkcionális adaptációja a genomi uracil/timin arány beállításához
- **14:30** Bacquet Caroline (EI): Transcriptional regulation of the human ABCC6 gene

2012. november 28.

<table>
<thead>
<tr>
<th>ID</th>
<th>Óra</th>
<th>Feladat</th>
<th>Helységi hely</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>30</td>
<td>Hessz Dóra (MFI): ATP-felismerő új fluoreszcens szenzor spektroszkópiai jellemzése</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>Nagy Nóra Veronika (MFI): Oldategensülyi és szerkezeti adatok meghatározása ESR-spektroszkópiai módszerrel; a szalicilaldehid szemikarbazon komplexképzése réz(II) és oxovanádium(IV) ionokkal</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>Németh Krisztina (MFI): Aminosavak és endomorfín analóg tetrapeptidek sztereoszelektív elválasztása kapilláris elektroforézissel</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>Jakab Zsolt (SZKI): Heparin oligoszacharidok szintézise ortogonális védőcsoport stratégiával</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>Jobbágy Csaba (SZKI): Külső hatásokra lumineszcens színváltozással "válaszoló" arany(I)tartalmú makrociklus</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Molnár Laura (SZKI): Királis építőelemek fejlesztése terpenoidok szintéziséhez</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>Pápai Imre (SZKI): Aldehidek és nitroalkének Michael-addíciós reakciói: A "pause & play" mechanizmus felderítése</td>
<td></td>
</tr>
</tbody>
</table>

Számlázás

- **10:50** – **11:50**
 - Oláh Judit (EI): A rendezetlen TPPP/p25 szerepe idegrendszeri betegségekben
 - Pál Ildikó (MFI): Neuronális és glialis eredetű folyamatok szerepe az idegi sejtek jelölésmentes optikai szignáljában
<table>
<thead>
<tr>
<th>Time</th>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:40</td>
<td>Kékesi Orsolya Sára (MFI)</td>
<td>Gliasejtek által irányított gátlás csökkenti a neuronális hiperaktivációt</td>
</tr>
<tr>
<td>12:00</td>
<td>Wittner Lucia (KPI)</td>
<td>Szinkron populációs aktivitás mintázatok epilepsziás és tumoros betegek agykérgi szövetében, in vitro</td>
</tr>
</tbody>
</table>

Ebéd (12^{30}-13^{30})

<table>
<thead>
<tr>
<th>Time</th>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:30</td>
<td>Honbolygó Ferenc (KPI)</td>
<td>Eseményhez kötött agyi potenciál eredmények a nyelvi prozódia és szintaxis interakciója kapcsán</td>
</tr>
<tr>
<td>13:50</td>
<td>Tóth Brigitta (KPI)</td>
<td>Enyhe kognitív zavarra jellemző funkcionális agyi hálózatok longitudinális vizsgálata</td>
</tr>
<tr>
<td>14:10</td>
<td>Horváth János (KPI)</td>
<td>Cselekvés-hang egybeeséseket hallási észlelése: Figyelem vagy forward modellezés?</td>
</tr>
<tr>
<td>14:30</td>
<td>Topál József (KPI)</td>
<td>Társas kompetencia és szociális kogníció kutya módra: Vadállat vagy farkasbőrbe bújt csecsemő?</td>
</tr>
<tr>
<td>14:50</td>
<td>Fülöp Éva (KPI)</td>
<td>A nemzeti identitás érzelmi szerveződése</td>
</tr>
</tbody>
</table>

2012. november 29.

<table>
<thead>
<tr>
<th>Time</th>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30</td>
<td>Tapasztó Levente (MFA)</td>
<td>Nanométeres hullámok grafénban</td>
</tr>
<tr>
<td>8:50</td>
<td>Volk János (MFA)</td>
<td>Nanoszál alapú elektromechanikai rendszerek</td>
</tr>
<tr>
<td>9:10</td>
<td>Balázsi Katalin (MFA)</td>
<td>Biokompatibilis C-Ti nanokompozit vékonyrétegek fejlesztése</td>
</tr>
<tr>
<td>9:30</td>
<td>Deák András (MFA)</td>
<td>Plazmonikus nanorészecskék: optikai tulajdonságok és összerveződés</td>
</tr>
<tr>
<td>9:50</td>
<td>Tolnai Gyula (AKI)</td>
<td>Alak anizotrópia hatása kémiai redukcióval előállított nikkel nanorészecskék mágneses jellemezőire</td>
</tr>
<tr>
<td>10:10</td>
<td>Pongrácz Anita (MFA)</td>
<td>Gyógyszeradagoló csatornával ellátott mélyagyi elektródák</td>
</tr>
<tr>
<td>10:30</td>
<td>Keszthelyi Tamás (MFI)</td>
<td>Hogyan befolyásolják a dendrimerek a lipid kettőséget töltéseloszlását és rendezettségét: összefrekvencia-keltési rezgési spektroszkópiai vizsgálata</td>
</tr>
</tbody>
</table>

Szünet (10^{50}-11^{00})

<table>
<thead>
<tr>
<th>Time</th>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00</td>
<td>Szarka Györgyi (SZKI)</td>
<td>A poli(vinil-klorid) környezetiégi előnyös átalakítása és lebontása</td>
</tr>
<tr>
<td>11:20</td>
<td>Farkas Mária (AKI)</td>
<td>Második generációs bioüzemanyagok gázfázisú elemi reakcióinak kinetikai vizsgálata</td>
</tr>
<tr>
<td>11:40</td>
<td>Sebestyén Zoltán (AKI)</td>
<td>Különböző eljárásokkal előkezelt biomassza minták vizsgálata termoanálitikai módszerekkel</td>
</tr>
<tr>
<td>12:00</td>
<td>Horváth Tibor (AKI)</td>
<td>A szennyvíztisztítás aktuális kérdései</td>
</tr>
<tr>
<td>12:20</td>
<td>Zárszó (Csépe Valéria, az MTA főtitkárhelyettese)</td>
<td>Díjátadás</td>
</tr>
<tr>
<td>16:00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A rövidítések jegyzéke

MTA TTK
Magyar Tudományos Akadémia Természettudományi Kutatóközpont
Research Centre for Natural Sciences, Hungarian Academy of Sciences

MTA TTK AKI
MTA Természettudományi Kutatóközpont Anyag- és Környezetkémiai Intézet
Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences

MTA TTK EI
MTA Természettudományi Kutatóközpont Enzimológiai Intézet
Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences

MTA TTK KPI
MTA Természettudományi Kutatóközpont Kognitív Idegtudományi és Pszichológiai Intézet
Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences

MTA TTK MFI
MTA Természettudományi Kutatóközpont Molekuláris Farmakológiai Intézet
Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences

MTA TTK MFA
MTA Természettudományi Kutatóközpont Műszaki Fizikai és Anyagtudományi Intézet
Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences

MTA TTK SZKI
MTA Természettudományi Kutatóközpont Szerves Kémiai Intézet
Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences
BME
Budapesti Műszaki és Gazdaságtudományi Egyetem
Budapest University of Technology and Economics

ELTE
Eötvös Loránd Tudományegyetem
Eötvös Loránd University

PPKE
Pázmány Péter Katolikus Egyetem
Pázmány Péter Catholic University

SE
Semmelweis Egyetem
Semmelweis University